Design and Simulation of Microbolometer with Dual Cavity for High Figure of Merits
The rapid expansion of the applications of infrared (IR) sensing in the commercial market has driven the need to develop new materials and detector designs for enhanced performance. In this work, we describe the design of a microbolometer that uses two cavities to suspend two layers (sensing and abs...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-04-01
|
Series: | Micromachines |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-666X/14/5/948 |
_version_ | 1827740732565225472 |
---|---|
author | Kevin O. Díaz Aponte Yanan Xu Mukti Rana |
author_facet | Kevin O. Díaz Aponte Yanan Xu Mukti Rana |
author_sort | Kevin O. Díaz Aponte |
collection | DOAJ |
description | The rapid expansion of the applications of infrared (IR) sensing in the commercial market has driven the need to develop new materials and detector designs for enhanced performance. In this work, we describe the design of a microbolometer that uses two cavities to suspend two layers (sensing and absorber). Here, we implemented the finite element method (FEM) from COMSOL Multiphysics to design the microbolometer. We varied the layout, thickness, and dimensions (width and length) of different layers one at a time to study the heat transfer effect for obtaining the maximum figure of merit. This work reports the design, simulation, and performance analysis of the figure of merit of a microbolometer that uses Ge<sub>x</sub>Si<sub>y</sub>Sn<sub>z</sub>O<sub>r</sub> thin films as the sensing layer. From our design, we obtained an effective thermal conductance of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.0135</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>7</mn></mrow></msup><mo> </mo><mi mathvariant="normal">W</mi><mo>/</mo><mi mathvariant="normal">K</mi></mrow></semantics></math></inline-formula>, a time constant of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>11</mn><mo> </mo><mi mathvariant="normal">m</mi><mi mathvariant="normal">s</mi></mrow></semantics></math></inline-formula>, responsivity of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5.040</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>5</mn></mrow></msup><mo> </mo><mi mathvariant="normal">V</mi><mo>/</mo><mi mathvariant="normal">W</mi></mrow></semantics></math></inline-formula>, and detectivity of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>9.357</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>7</mn></mrow></msup><mo> </mo><mrow><mrow><mi mathvariant="normal">c</mi><mi mathvariant="normal">m</mi><mo>−</mo><mi mathvariant="normal">H</mi><msup><mrow><mi mathvariant="normal">z</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></mrow><mo>/</mo><mrow><mi mathvariant="normal">W</mi></mrow></mrow></mrow></semantics></math></inline-formula> considering a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mo> </mo><mi mathvariant="sans-serif">μ</mi><mi mathvariant="normal">A</mi></mrow></semantics></math></inline-formula> bias current. |
first_indexed | 2024-03-11T03:29:23Z |
format | Article |
id | doaj.art-a51e348ca9d3472d891a3de06f21f0e1 |
institution | Directory Open Access Journal |
issn | 2072-666X |
language | English |
last_indexed | 2024-03-11T03:29:23Z |
publishDate | 2023-04-01 |
publisher | MDPI AG |
record_format | Article |
series | Micromachines |
spelling | doaj.art-a51e348ca9d3472d891a3de06f21f0e12023-11-18T02:29:33ZengMDPI AGMicromachines2072-666X2023-04-0114594810.3390/mi14050948Design and Simulation of Microbolometer with Dual Cavity for High Figure of MeritsKevin O. Díaz Aponte0Yanan Xu1Mukti Rana2Division of Physics, Engineering, Mathematics and Computer Sciences, Delaware State University, Dover, DE 19901, USADivision of Physics, Engineering, Mathematics and Computer Sciences, Delaware State University, Dover, DE 19901, USADivision of Physics, Engineering, Mathematics and Computer Sciences, Delaware State University, Dover, DE 19901, USAThe rapid expansion of the applications of infrared (IR) sensing in the commercial market has driven the need to develop new materials and detector designs for enhanced performance. In this work, we describe the design of a microbolometer that uses two cavities to suspend two layers (sensing and absorber). Here, we implemented the finite element method (FEM) from COMSOL Multiphysics to design the microbolometer. We varied the layout, thickness, and dimensions (width and length) of different layers one at a time to study the heat transfer effect for obtaining the maximum figure of merit. This work reports the design, simulation, and performance analysis of the figure of merit of a microbolometer that uses Ge<sub>x</sub>Si<sub>y</sub>Sn<sub>z</sub>O<sub>r</sub> thin films as the sensing layer. From our design, we obtained an effective thermal conductance of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.0135</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>7</mn></mrow></msup><mo> </mo><mi mathvariant="normal">W</mi><mo>/</mo><mi mathvariant="normal">K</mi></mrow></semantics></math></inline-formula>, a time constant of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>11</mn><mo> </mo><mi mathvariant="normal">m</mi><mi mathvariant="normal">s</mi></mrow></semantics></math></inline-formula>, responsivity of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5.040</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>5</mn></mrow></msup><mo> </mo><mi mathvariant="normal">V</mi><mo>/</mo><mi mathvariant="normal">W</mi></mrow></semantics></math></inline-formula>, and detectivity of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>9.357</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>7</mn></mrow></msup><mo> </mo><mrow><mrow><mi mathvariant="normal">c</mi><mi mathvariant="normal">m</mi><mo>−</mo><mi mathvariant="normal">H</mi><msup><mrow><mi mathvariant="normal">z</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></mrow><mo>/</mo><mrow><mi mathvariant="normal">W</mi></mrow></mrow></mrow></semantics></math></inline-formula> considering a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mo> </mo><mi mathvariant="sans-serif">μ</mi><mi mathvariant="normal">A</mi></mrow></semantics></math></inline-formula> bias current.https://www.mdpi.com/2072-666X/14/5/948thermal sensorsmicrobolometerinfrared detector |
spellingShingle | Kevin O. Díaz Aponte Yanan Xu Mukti Rana Design and Simulation of Microbolometer with Dual Cavity for High Figure of Merits Micromachines thermal sensors microbolometer infrared detector |
title | Design and Simulation of Microbolometer with Dual Cavity for High Figure of Merits |
title_full | Design and Simulation of Microbolometer with Dual Cavity for High Figure of Merits |
title_fullStr | Design and Simulation of Microbolometer with Dual Cavity for High Figure of Merits |
title_full_unstemmed | Design and Simulation of Microbolometer with Dual Cavity for High Figure of Merits |
title_short | Design and Simulation of Microbolometer with Dual Cavity for High Figure of Merits |
title_sort | design and simulation of microbolometer with dual cavity for high figure of merits |
topic | thermal sensors microbolometer infrared detector |
url | https://www.mdpi.com/2072-666X/14/5/948 |
work_keys_str_mv | AT kevinodiazaponte designandsimulationofmicrobolometerwithdualcavityforhighfigureofmerits AT yananxu designandsimulationofmicrobolometerwithdualcavityforhighfigureofmerits AT muktirana designandsimulationofmicrobolometerwithdualcavityforhighfigureofmerits |