Design and Simulation of Microbolometer with Dual Cavity for High Figure of Merits

The rapid expansion of the applications of infrared (IR) sensing in the commercial market has driven the need to develop new materials and detector designs for enhanced performance. In this work, we describe the design of a microbolometer that uses two cavities to suspend two layers (sensing and abs...

Full description

Bibliographic Details
Main Authors: Kevin O. Díaz Aponte, Yanan Xu, Mukti Rana
Format: Article
Language:English
Published: MDPI AG 2023-04-01
Series:Micromachines
Subjects:
Online Access:https://www.mdpi.com/2072-666X/14/5/948
_version_ 1827740732565225472
author Kevin O. Díaz Aponte
Yanan Xu
Mukti Rana
author_facet Kevin O. Díaz Aponte
Yanan Xu
Mukti Rana
author_sort Kevin O. Díaz Aponte
collection DOAJ
description The rapid expansion of the applications of infrared (IR) sensing in the commercial market has driven the need to develop new materials and detector designs for enhanced performance. In this work, we describe the design of a microbolometer that uses two cavities to suspend two layers (sensing and absorber). Here, we implemented the finite element method (FEM) from COMSOL Multiphysics to design the microbolometer. We varied the layout, thickness, and dimensions (width and length) of different layers one at a time to study the heat transfer effect for obtaining the maximum figure of merit. This work reports the design, simulation, and performance analysis of the figure of merit of a microbolometer that uses Ge<sub>x</sub>Si<sub>y</sub>Sn<sub>z</sub>O<sub>r</sub> thin films as the sensing layer. From our design, we obtained an effective thermal conductance of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.0135</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>7</mn></mrow></msup><mo> </mo><mi mathvariant="normal">W</mi><mo>/</mo><mi mathvariant="normal">K</mi></mrow></semantics></math></inline-formula>, a time constant of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>11</mn><mo> </mo><mi mathvariant="normal">m</mi><mi mathvariant="normal">s</mi></mrow></semantics></math></inline-formula>, responsivity of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5.040</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>5</mn></mrow></msup><mo> </mo><mi mathvariant="normal">V</mi><mo>/</mo><mi mathvariant="normal">W</mi></mrow></semantics></math></inline-formula>, and detectivity of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>9.357</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>7</mn></mrow></msup><mo> </mo><mrow><mrow><mi mathvariant="normal">c</mi><mi mathvariant="normal">m</mi><mo>−</mo><mi mathvariant="normal">H</mi><msup><mrow><mi mathvariant="normal">z</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></mrow><mo>/</mo><mrow><mi mathvariant="normal">W</mi></mrow></mrow></mrow></semantics></math></inline-formula> considering a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mo> </mo><mi mathvariant="sans-serif">μ</mi><mi mathvariant="normal">A</mi></mrow></semantics></math></inline-formula> bias current.
first_indexed 2024-03-11T03:29:23Z
format Article
id doaj.art-a51e348ca9d3472d891a3de06f21f0e1
institution Directory Open Access Journal
issn 2072-666X
language English
last_indexed 2024-03-11T03:29:23Z
publishDate 2023-04-01
publisher MDPI AG
record_format Article
series Micromachines
spelling doaj.art-a51e348ca9d3472d891a3de06f21f0e12023-11-18T02:29:33ZengMDPI AGMicromachines2072-666X2023-04-0114594810.3390/mi14050948Design and Simulation of Microbolometer with Dual Cavity for High Figure of MeritsKevin O. Díaz Aponte0Yanan Xu1Mukti Rana2Division of Physics, Engineering, Mathematics and Computer Sciences, Delaware State University, Dover, DE 19901, USADivision of Physics, Engineering, Mathematics and Computer Sciences, Delaware State University, Dover, DE 19901, USADivision of Physics, Engineering, Mathematics and Computer Sciences, Delaware State University, Dover, DE 19901, USAThe rapid expansion of the applications of infrared (IR) sensing in the commercial market has driven the need to develop new materials and detector designs for enhanced performance. In this work, we describe the design of a microbolometer that uses two cavities to suspend two layers (sensing and absorber). Here, we implemented the finite element method (FEM) from COMSOL Multiphysics to design the microbolometer. We varied the layout, thickness, and dimensions (width and length) of different layers one at a time to study the heat transfer effect for obtaining the maximum figure of merit. This work reports the design, simulation, and performance analysis of the figure of merit of a microbolometer that uses Ge<sub>x</sub>Si<sub>y</sub>Sn<sub>z</sub>O<sub>r</sub> thin films as the sensing layer. From our design, we obtained an effective thermal conductance of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.0135</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>7</mn></mrow></msup><mo> </mo><mi mathvariant="normal">W</mi><mo>/</mo><mi mathvariant="normal">K</mi></mrow></semantics></math></inline-formula>, a time constant of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>11</mn><mo> </mo><mi mathvariant="normal">m</mi><mi mathvariant="normal">s</mi></mrow></semantics></math></inline-formula>, responsivity of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5.040</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>5</mn></mrow></msup><mo> </mo><mi mathvariant="normal">V</mi><mo>/</mo><mi mathvariant="normal">W</mi></mrow></semantics></math></inline-formula>, and detectivity of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>9.357</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>7</mn></mrow></msup><mo> </mo><mrow><mrow><mi mathvariant="normal">c</mi><mi mathvariant="normal">m</mi><mo>−</mo><mi mathvariant="normal">H</mi><msup><mrow><mi mathvariant="normal">z</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></mrow><mo>/</mo><mrow><mi mathvariant="normal">W</mi></mrow></mrow></mrow></semantics></math></inline-formula> considering a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mo> </mo><mi mathvariant="sans-serif">μ</mi><mi mathvariant="normal">A</mi></mrow></semantics></math></inline-formula> bias current.https://www.mdpi.com/2072-666X/14/5/948thermal sensorsmicrobolometerinfrared detector
spellingShingle Kevin O. Díaz Aponte
Yanan Xu
Mukti Rana
Design and Simulation of Microbolometer with Dual Cavity for High Figure of Merits
Micromachines
thermal sensors
microbolometer
infrared detector
title Design and Simulation of Microbolometer with Dual Cavity for High Figure of Merits
title_full Design and Simulation of Microbolometer with Dual Cavity for High Figure of Merits
title_fullStr Design and Simulation of Microbolometer with Dual Cavity for High Figure of Merits
title_full_unstemmed Design and Simulation of Microbolometer with Dual Cavity for High Figure of Merits
title_short Design and Simulation of Microbolometer with Dual Cavity for High Figure of Merits
title_sort design and simulation of microbolometer with dual cavity for high figure of merits
topic thermal sensors
microbolometer
infrared detector
url https://www.mdpi.com/2072-666X/14/5/948
work_keys_str_mv AT kevinodiazaponte designandsimulationofmicrobolometerwithdualcavityforhighfigureofmerits
AT yananxu designandsimulationofmicrobolometerwithdualcavityforhighfigureofmerits
AT muktirana designandsimulationofmicrobolometerwithdualcavityforhighfigureofmerits