Root Branching and Nutrient Efficiency: Status and Way Forward in Root and Tuber Crops
Plants are immobile organisms that require roots to efficiently and cost-effectively exploit their habitat for water and nutrients. Plant root systems are dynamic structures capable of altering root branching, root angle, and root growth rates determining overall architecture. This plasticity involv...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2019-03-01
|
Series: | Frontiers in Plant Science |
Subjects: | |
Online Access: | https://www.frontiersin.org/article/10.3389/fpls.2019.00237/full |
_version_ | 1819295123766247424 |
---|---|
author | Luis O. Duque Arthur Villordon |
author_facet | Luis O. Duque Arthur Villordon |
author_sort | Luis O. Duque |
collection | DOAJ |
description | Plants are immobile organisms that require roots to efficiently and cost-effectively exploit their habitat for water and nutrients. Plant root systems are dynamic structures capable of altering root branching, root angle, and root growth rates determining overall architecture. This plasticity involves belowground plant-root mediated synergies coupled through a continuum of environmental interactions and endogenous developmental processes facilitating plants to adapt to favorable or adverse soil conditions. Plant root branching is paramount to ensure adequate access to soil water and nutrients. Although substantial resources have been devoted toward this goal, significant knowledge gaps exist. In well-studied systems such as rice and maize, it has become evident that root branching plays a significant role in the acquisition of nutrients and other soil-based resources. In these crop species, specific root branching traits that confer enhanced nutrient acquisition are well-characterized and are already being incorporated into breeding populations. In contrast, the understanding of root branching in root and tuber crop productivity has lagged behind. In this review article, we highlight what is known about root branching in root and tuber crops (RTCs) and mark new research directions, such as the use novel phenotyping methods, examining the changes in root morphology and anatomy under nutrient stress, and germplasm screening with enhanced root architecture for more efficient nutrient capture. These directions will permit a better understanding of the interaction between root branching and nutrient acquisition in these globally important crop species. |
first_indexed | 2024-12-24T04:37:13Z |
format | Article |
id | doaj.art-a51f173bee9942c1a9808376bebbddd2 |
institution | Directory Open Access Journal |
issn | 1664-462X |
language | English |
last_indexed | 2024-12-24T04:37:13Z |
publishDate | 2019-03-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Plant Science |
spelling | doaj.art-a51f173bee9942c1a9808376bebbddd22022-12-21T17:15:04ZengFrontiers Media S.A.Frontiers in Plant Science1664-462X2019-03-011010.3389/fpls.2019.00237434597Root Branching and Nutrient Efficiency: Status and Way Forward in Root and Tuber CropsLuis O. Duque0Arthur Villordon1Department of Plant Science, The Pennsylvania State University, University Park, PA, United StatesSweet Potato Research Station, Louisiana State University Agricultural Center, Chase, LA, United StatesPlants are immobile organisms that require roots to efficiently and cost-effectively exploit their habitat for water and nutrients. Plant root systems are dynamic structures capable of altering root branching, root angle, and root growth rates determining overall architecture. This plasticity involves belowground plant-root mediated synergies coupled through a continuum of environmental interactions and endogenous developmental processes facilitating plants to adapt to favorable or adverse soil conditions. Plant root branching is paramount to ensure adequate access to soil water and nutrients. Although substantial resources have been devoted toward this goal, significant knowledge gaps exist. In well-studied systems such as rice and maize, it has become evident that root branching plays a significant role in the acquisition of nutrients and other soil-based resources. In these crop species, specific root branching traits that confer enhanced nutrient acquisition are well-characterized and are already being incorporated into breeding populations. In contrast, the understanding of root branching in root and tuber crop productivity has lagged behind. In this review article, we highlight what is known about root branching in root and tuber crops (RTCs) and mark new research directions, such as the use novel phenotyping methods, examining the changes in root morphology and anatomy under nutrient stress, and germplasm screening with enhanced root architecture for more efficient nutrient capture. These directions will permit a better understanding of the interaction between root branching and nutrient acquisition in these globally important crop species.https://www.frontiersin.org/article/10.3389/fpls.2019.00237/fullroot system architecture (RSA)root and tuber cropsnutrient efficiencysweetpotatopotatoyam |
spellingShingle | Luis O. Duque Arthur Villordon Root Branching and Nutrient Efficiency: Status and Way Forward in Root and Tuber Crops Frontiers in Plant Science root system architecture (RSA) root and tuber crops nutrient efficiency sweetpotato potato yam |
title | Root Branching and Nutrient Efficiency: Status and Way Forward in Root and Tuber Crops |
title_full | Root Branching and Nutrient Efficiency: Status and Way Forward in Root and Tuber Crops |
title_fullStr | Root Branching and Nutrient Efficiency: Status and Way Forward in Root and Tuber Crops |
title_full_unstemmed | Root Branching and Nutrient Efficiency: Status and Way Forward in Root and Tuber Crops |
title_short | Root Branching and Nutrient Efficiency: Status and Way Forward in Root and Tuber Crops |
title_sort | root branching and nutrient efficiency status and way forward in root and tuber crops |
topic | root system architecture (RSA) root and tuber crops nutrient efficiency sweetpotato potato yam |
url | https://www.frontiersin.org/article/10.3389/fpls.2019.00237/full |
work_keys_str_mv | AT luisoduque rootbranchingandnutrientefficiencystatusandwayforwardinrootandtubercrops AT arthurvillordon rootbranchingandnutrientefficiencystatusandwayforwardinrootandtubercrops |