Design and Modeling of Polysilicon Electrothermal Actuators for a MEMS Mirror with Low Power Consumption

Endoscopic optical-coherence tomography (OCT) systems require low cost mirrors with small footprint size, out-of-plane deflections and low bias voltage. These requirements can be achieved with electrothermal actuators based on microelectromechanical systems (MEMS). We present the design and modeling...

Full description

Bibliographic Details
Main Authors: Miguel Lara-Castro, Adrian Herrera-Amaya, Marco A. Escarola-Rosas, Moisés Vázquez-Toledo, Francisco López-Huerta, Luz A. Aguilera-Cortés, Agustín L. Herrera-May
Format: Article
Language:English
Published: MDPI AG 2017-06-01
Series:Micromachines
Subjects:
Online Access:http://www.mdpi.com/2072-666X/8/7/203
_version_ 1818117329657004032
author Miguel Lara-Castro
Adrian Herrera-Amaya
Marco A. Escarola-Rosas
Moisés Vázquez-Toledo
Francisco López-Huerta
Luz A. Aguilera-Cortés
Agustín L. Herrera-May
author_facet Miguel Lara-Castro
Adrian Herrera-Amaya
Marco A. Escarola-Rosas
Moisés Vázquez-Toledo
Francisco López-Huerta
Luz A. Aguilera-Cortés
Agustín L. Herrera-May
author_sort Miguel Lara-Castro
collection DOAJ
description Endoscopic optical-coherence tomography (OCT) systems require low cost mirrors with small footprint size, out-of-plane deflections and low bias voltage. These requirements can be achieved with electrothermal actuators based on microelectromechanical systems (MEMS). We present the design and modeling of polysilicon electrothermal actuators for a MEMS mirror (100 μm × 100 μm × 2.25 μm). These actuators are composed by two beam types (2.25 μm thickness) with different cross-section area, which are separated by 2 μm gap. The mirror and actuators are designed through the Sandia Ultra-planar Multi-level MEMS Technology V (SUMMiT V®) process, obtaining a small footprint size (1028 μm × 1028 µm) for actuators of 550 µm length. The actuators have out-of-plane displacements caused by low dc voltages and without use material layers with distinct thermal expansion coefficients. The temperature behavior along the actuators is calculated through analytical models that include terms of heat energy generation, heat conduction and heat energy loss. The force method is used to predict the maximum out-of-plane displacements in the actuator tip as function of supplied voltage. Both analytical models, under steady-state conditions, employ the polysilicon resistivity as function of the temperature. The electrothermal-and structural behavior of the actuators is studied considering different beams dimensions (length and width) and dc bias voltages from 0.5 to 2.5 V. For 2.5 V, the actuator of 550 µm length reaches a maximum temperature, displacement and electrical power of 115 °C, 10.3 µm and 6.3 mW, respectively. The designed actuation mechanism can be useful for MEMS mirrors of different sizes with potential application in endoscopic OCT systems that require low power consumption.
first_indexed 2024-12-11T04:36:41Z
format Article
id doaj.art-a52f201567784970af42f938b2663c11
institution Directory Open Access Journal
issn 2072-666X
language English
last_indexed 2024-12-11T04:36:41Z
publishDate 2017-06-01
publisher MDPI AG
record_format Article
series Micromachines
spelling doaj.art-a52f201567784970af42f938b2663c112022-12-22T01:20:44ZengMDPI AGMicromachines2072-666X2017-06-018720310.3390/mi8070203mi8070203Design and Modeling of Polysilicon Electrothermal Actuators for a MEMS Mirror with Low Power ConsumptionMiguel Lara-Castro0Adrian Herrera-Amaya1Marco A. Escarola-Rosas2Moisés Vázquez-Toledo3Francisco López-Huerta4Luz A. Aguilera-Cortés5Agustín L. Herrera-May6Micro and Nanotechnology Research Center, Universidad Veracruzana, Calzada Ruiz Cortines 455, Boca del Río, VER 94294, MexicoDepto, Ingeniería Mecánica, Campus Irapuato-Salamanca, Universidad de Guanajuato/Carretera Salamanca-Valle de Santiago Km. 3.5 + 1.8 km, Salamanca, GTO 36885, MexicoMicro and Nanotechnology Research Center, Universidad Veracruzana, Calzada Ruiz Cortines 455, Boca del Río, VER 94294, MexicoSistemas Automatizados, Centro de Ingeniería y Desarrollo Industrial/Av. Pie de la Cuesta No. 702, Desarrollo San Pablo, Querétaro 76125 MéxicoEngineering Faculty, Universidad Veracruzana, Calzada Ruiz Cortines 455, Boca del Río, Veracruz 94294, MexicoDepto, Ingeniería Mecánica, Campus Irapuato-Salamanca, Universidad de Guanajuato/Carretera Salamanca-Valle de Santiago Km. 3.5 + 1.8 km, Salamanca, GTO 36885, MexicoMicro and Nanotechnology Research Center, Universidad Veracruzana, Calzada Ruiz Cortines 455, Boca del Río, VER 94294, MexicoEndoscopic optical-coherence tomography (OCT) systems require low cost mirrors with small footprint size, out-of-plane deflections and low bias voltage. These requirements can be achieved with electrothermal actuators based on microelectromechanical systems (MEMS). We present the design and modeling of polysilicon electrothermal actuators for a MEMS mirror (100 μm × 100 μm × 2.25 μm). These actuators are composed by two beam types (2.25 μm thickness) with different cross-section area, which are separated by 2 μm gap. The mirror and actuators are designed through the Sandia Ultra-planar Multi-level MEMS Technology V (SUMMiT V®) process, obtaining a small footprint size (1028 μm × 1028 µm) for actuators of 550 µm length. The actuators have out-of-plane displacements caused by low dc voltages and without use material layers with distinct thermal expansion coefficients. The temperature behavior along the actuators is calculated through analytical models that include terms of heat energy generation, heat conduction and heat energy loss. The force method is used to predict the maximum out-of-plane displacements in the actuator tip as function of supplied voltage. Both analytical models, under steady-state conditions, employ the polysilicon resistivity as function of the temperature. The electrothermal-and structural behavior of the actuators is studied considering different beams dimensions (length and width) and dc bias voltages from 0.5 to 2.5 V. For 2.5 V, the actuator of 550 µm length reaches a maximum temperature, displacement and electrical power of 115 °C, 10.3 µm and 6.3 mW, respectively. The designed actuation mechanism can be useful for MEMS mirrors of different sizes with potential application in endoscopic OCT systems that require low power consumption.http://www.mdpi.com/2072-666X/8/7/203electrothermal actuatorsendoscopic optical-coherence tomographymicroelectromechanical systems (MEMS) mirrorpolysiliconSUMMiT V
spellingShingle Miguel Lara-Castro
Adrian Herrera-Amaya
Marco A. Escarola-Rosas
Moisés Vázquez-Toledo
Francisco López-Huerta
Luz A. Aguilera-Cortés
Agustín L. Herrera-May
Design and Modeling of Polysilicon Electrothermal Actuators for a MEMS Mirror with Low Power Consumption
Micromachines
electrothermal actuators
endoscopic optical-coherence tomography
microelectromechanical systems (MEMS) mirror
polysilicon
SUMMiT V
title Design and Modeling of Polysilicon Electrothermal Actuators for a MEMS Mirror with Low Power Consumption
title_full Design and Modeling of Polysilicon Electrothermal Actuators for a MEMS Mirror with Low Power Consumption
title_fullStr Design and Modeling of Polysilicon Electrothermal Actuators for a MEMS Mirror with Low Power Consumption
title_full_unstemmed Design and Modeling of Polysilicon Electrothermal Actuators for a MEMS Mirror with Low Power Consumption
title_short Design and Modeling of Polysilicon Electrothermal Actuators for a MEMS Mirror with Low Power Consumption
title_sort design and modeling of polysilicon electrothermal actuators for a mems mirror with low power consumption
topic electrothermal actuators
endoscopic optical-coherence tomography
microelectromechanical systems (MEMS) mirror
polysilicon
SUMMiT V
url http://www.mdpi.com/2072-666X/8/7/203
work_keys_str_mv AT miguellaracastro designandmodelingofpolysiliconelectrothermalactuatorsforamemsmirrorwithlowpowerconsumption
AT adrianherreraamaya designandmodelingofpolysiliconelectrothermalactuatorsforamemsmirrorwithlowpowerconsumption
AT marcoaescarolarosas designandmodelingofpolysiliconelectrothermalactuatorsforamemsmirrorwithlowpowerconsumption
AT moisesvazqueztoledo designandmodelingofpolysiliconelectrothermalactuatorsforamemsmirrorwithlowpowerconsumption
AT franciscolopezhuerta designandmodelingofpolysiliconelectrothermalactuatorsforamemsmirrorwithlowpowerconsumption
AT luzaaguileracortes designandmodelingofpolysiliconelectrothermalactuatorsforamemsmirrorwithlowpowerconsumption
AT agustinlherreramay designandmodelingofpolysiliconelectrothermalactuatorsforamemsmirrorwithlowpowerconsumption