Estrada and L-Estrada Indices of Edge-Independent Random Graphs
Let \(G\) be a simple graph of order \(n\) with eigenvalues \(\lambda_1,\lambda_2,\cdots,\lambda_n\) and normalized Laplacian eigenvalues \(\mu_1,\mu_2,\cdots,\mu_n\). The Estrada index and normalized Laplacian Estrada index are defined as \(EE(G)=\sum_{k=1}^ne^{\lambda_k}\) and \(\mathcal{L}EE(G)=\...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2015-08-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | http://www.mdpi.com/2073-8994/7/3/1455 |
Summary: | Let \(G\) be a simple graph of order \(n\) with eigenvalues \(\lambda_1,\lambda_2,\cdots,\lambda_n\) and normalized Laplacian eigenvalues \(\mu_1,\mu_2,\cdots,\mu_n\). The Estrada index and normalized Laplacian Estrada index are defined as \(EE(G)=\sum_{k=1}^ne^{\lambda_k}\) and \(\mathcal{L}EE(G)=\sum_{k=1}^ne^{\mu_k-1}\), respectively. We establish upper and lower bounds to \(EE\) and \(\mathcal{L}EE\) for edge-independent random graphs, containing the classical Erdös-Rényi graphs as special cases. |
---|---|
ISSN: | 2073-8994 |