Estrada and L-Estrada Indices of Edge-Independent Random Graphs
Let \(G\) be a simple graph of order \(n\) with eigenvalues \(\lambda_1,\lambda_2,\cdots,\lambda_n\) and normalized Laplacian eigenvalues \(\mu_1,\mu_2,\cdots,\mu_n\). The Estrada index and normalized Laplacian Estrada index are defined as \(EE(G)=\sum_{k=1}^ne^{\lambda_k}\) and \(\mathcal{L}EE(G)=\...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2015-08-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | http://www.mdpi.com/2073-8994/7/3/1455 |
_version_ | 1811306699189911552 |
---|---|
author | Yilun Shang |
author_facet | Yilun Shang |
author_sort | Yilun Shang |
collection | DOAJ |
description | Let \(G\) be a simple graph of order \(n\) with eigenvalues \(\lambda_1,\lambda_2,\cdots,\lambda_n\) and normalized Laplacian eigenvalues \(\mu_1,\mu_2,\cdots,\mu_n\). The Estrada index and normalized Laplacian Estrada index are defined as \(EE(G)=\sum_{k=1}^ne^{\lambda_k}\) and \(\mathcal{L}EE(G)=\sum_{k=1}^ne^{\mu_k-1}\), respectively. We establish upper and lower bounds to \(EE\) and \(\mathcal{L}EE\) for edge-independent random graphs, containing the classical Erdös-Rényi graphs as special cases. |
first_indexed | 2024-04-13T08:50:09Z |
format | Article |
id | doaj.art-a53c112a40464109b98a8491325c8a88 |
institution | Directory Open Access Journal |
issn | 2073-8994 |
language | English |
last_indexed | 2024-04-13T08:50:09Z |
publishDate | 2015-08-01 |
publisher | MDPI AG |
record_format | Article |
series | Symmetry |
spelling | doaj.art-a53c112a40464109b98a8491325c8a882022-12-22T02:53:31ZengMDPI AGSymmetry2073-89942015-08-01731455146210.3390/sym7031455sym7031455Estrada and L-Estrada Indices of Edge-Independent Random GraphsYilun Shang0Department of Mathematics, Tongji University, Shanghai 200092, ChinaLet \(G\) be a simple graph of order \(n\) with eigenvalues \(\lambda_1,\lambda_2,\cdots,\lambda_n\) and normalized Laplacian eigenvalues \(\mu_1,\mu_2,\cdots,\mu_n\). The Estrada index and normalized Laplacian Estrada index are defined as \(EE(G)=\sum_{k=1}^ne^{\lambda_k}\) and \(\mathcal{L}EE(G)=\sum_{k=1}^ne^{\mu_k-1}\), respectively. We establish upper and lower bounds to \(EE\) and \(\mathcal{L}EE\) for edge-independent random graphs, containing the classical Erdös-Rényi graphs as special cases.http://www.mdpi.com/2073-8994/7/3/1455Estrada indexNormalized Laplacian Estrada indexedge-independent random graph |
spellingShingle | Yilun Shang Estrada and L-Estrada Indices of Edge-Independent Random Graphs Symmetry Estrada index Normalized Laplacian Estrada index edge-independent random graph |
title | Estrada and L-Estrada Indices of Edge-Independent Random Graphs |
title_full | Estrada and L-Estrada Indices of Edge-Independent Random Graphs |
title_fullStr | Estrada and L-Estrada Indices of Edge-Independent Random Graphs |
title_full_unstemmed | Estrada and L-Estrada Indices of Edge-Independent Random Graphs |
title_short | Estrada and L-Estrada Indices of Edge-Independent Random Graphs |
title_sort | estrada and l estrada indices of edge independent random graphs |
topic | Estrada index Normalized Laplacian Estrada index edge-independent random graph |
url | http://www.mdpi.com/2073-8994/7/3/1455 |
work_keys_str_mv | AT yilunshang estradaandlestradaindicesofedgeindependentrandomgraphs |