Estrada and L-Estrada Indices of Edge-Independent Random Graphs

Let \(G\) be a simple graph of order \(n\) with eigenvalues \(\lambda_1,\lambda_2,\cdots,\lambda_n\) and normalized Laplacian eigenvalues \(\mu_1,\mu_2,\cdots,\mu_n\). The Estrada index and normalized Laplacian Estrada index are defined as \(EE(G)=\sum_{k=1}^ne^{\lambda_k}\) and \(\mathcal{L}EE(G)=\...

Full description

Bibliographic Details
Main Author: Yilun Shang
Format: Article
Language:English
Published: MDPI AG 2015-08-01
Series:Symmetry
Subjects:
Online Access:http://www.mdpi.com/2073-8994/7/3/1455
_version_ 1811306699189911552
author Yilun Shang
author_facet Yilun Shang
author_sort Yilun Shang
collection DOAJ
description Let \(G\) be a simple graph of order \(n\) with eigenvalues \(\lambda_1,\lambda_2,\cdots,\lambda_n\) and normalized Laplacian eigenvalues \(\mu_1,\mu_2,\cdots,\mu_n\). The Estrada index and normalized Laplacian Estrada index are defined as \(EE(G)=\sum_{k=1}^ne^{\lambda_k}\) and \(\mathcal{L}EE(G)=\sum_{k=1}^ne^{\mu_k-1}\), respectively. We establish upper and lower bounds to \(EE\) and \(\mathcal{L}EE\) for edge-independent random graphs, containing the classical Erdös-Rényi graphs as special cases.
first_indexed 2024-04-13T08:50:09Z
format Article
id doaj.art-a53c112a40464109b98a8491325c8a88
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-04-13T08:50:09Z
publishDate 2015-08-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-a53c112a40464109b98a8491325c8a882022-12-22T02:53:31ZengMDPI AGSymmetry2073-89942015-08-01731455146210.3390/sym7031455sym7031455Estrada and L-Estrada Indices of Edge-Independent Random GraphsYilun Shang0Department of Mathematics, Tongji University, Shanghai 200092, ChinaLet \(G\) be a simple graph of order \(n\) with eigenvalues \(\lambda_1,\lambda_2,\cdots,\lambda_n\) and normalized Laplacian eigenvalues \(\mu_1,\mu_2,\cdots,\mu_n\). The Estrada index and normalized Laplacian Estrada index are defined as \(EE(G)=\sum_{k=1}^ne^{\lambda_k}\) and \(\mathcal{L}EE(G)=\sum_{k=1}^ne^{\mu_k-1}\), respectively. We establish upper and lower bounds to \(EE\) and \(\mathcal{L}EE\) for edge-independent random graphs, containing the classical Erdös-Rényi graphs as special cases.http://www.mdpi.com/2073-8994/7/3/1455Estrada indexNormalized Laplacian Estrada indexedge-independent random graph
spellingShingle Yilun Shang
Estrada and L-Estrada Indices of Edge-Independent Random Graphs
Symmetry
Estrada index
Normalized Laplacian Estrada index
edge-independent random graph
title Estrada and L-Estrada Indices of Edge-Independent Random Graphs
title_full Estrada and L-Estrada Indices of Edge-Independent Random Graphs
title_fullStr Estrada and L-Estrada Indices of Edge-Independent Random Graphs
title_full_unstemmed Estrada and L-Estrada Indices of Edge-Independent Random Graphs
title_short Estrada and L-Estrada Indices of Edge-Independent Random Graphs
title_sort estrada and l estrada indices of edge independent random graphs
topic Estrada index
Normalized Laplacian Estrada index
edge-independent random graph
url http://www.mdpi.com/2073-8994/7/3/1455
work_keys_str_mv AT yilunshang estradaandlestradaindicesofedgeindependentrandomgraphs