Summary: | We measured the anelastic, dielectric and structural properties of the metal-free molecular perovskite (ABX<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>) (MDABCO)(NH<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula>)I<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>, which has already been demonstrated to become ferroelectric below <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mi mathvariant="normal">C</mi></msub><mo>=</mo></mrow></semantics></math></inline-formula> 448 K. Both the dielectric permittivity measured in air on discs pressed from powder and the complex Young’s modulus measured on resonating bars in a vacuum show that the material starts to deteriorate with a loss of mass just above <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi mathvariant="normal">C</mi></msub></semantics></math></inline-formula>, introducing defects and markedly lowering <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi mathvariant="normal">C</mi></msub></semantics></math></inline-formula>. The elastic modulus softens by 50% when heating through the initial <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi mathvariant="normal">C</mi></msub></semantics></math></inline-formula>, contrary to usual ferroelectrics, which are stiffer in the paraelectric phase. This is indicative of improper ferroelectricity, in which the primary order parameter of the transition is not the electric polarization, but the orientational order of the MDABCO molecules. The degraded material presents thermally activated relaxation peaks in the elastic energy loss, whose intensities increase together with the decrease in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi mathvariant="normal">C</mi></msub></semantics></math></inline-formula>. The peaks are much broader than pure Debye due to the general loss of crystallinity. This is also apparent from X-ray diffraction, but their relaxation times have parameters typical of point defects. It is argued that the major defects should be of the Schottky type, mainly due to the loss of (MDABCO)<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></semantics></math></inline-formula> and I<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>−</mo></msup></semantics></math></inline-formula>, leaving charge neutrality, and possibly (NH<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula>)<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>+</mo></msup></semantics></math></inline-formula> vacancies. The focus is on an anelastic relaxation process peaked around 200 K at ∼1 kHz, whose relaxation time follows the Arrhenius law with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>0</mn></msub></semantics></math></inline-formula> ∼ <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mrow><mo>−</mo><mn>13</mn></mrow></msup></semantics></math></inline-formula> s and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mo>≃</mo><mn>0.4</mn></mrow></semantics></math></inline-formula> eV. This peak is attributed to I vacancies (V<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi mathvariant="normal">X</mi></msub></semantics></math></inline-formula>) hopping around MDABCO vacancies (V<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi mathvariant="normal">A</mi></msub></semantics></math></inline-formula>), and its intensity presents a peculiar dependence on the temperature and content of defects. The phenomenology is thoroughly discussed in terms of lattice disorder introduced by defects and partition of V<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi mathvariant="normal">X</mi></msub></semantics></math></inline-formula> among sites that are far from and close to the cation vacancies. A method is proposed for calculating the relative concentrations of V<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi mathvariant="normal">X</mi></msub></semantics></math></inline-formula>, that are untrapped, paired with V<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi mathvariant="normal">A</mi></msub></semantics></math></inline-formula> or forming V<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi mathvariant="normal">X</mi></msub></semantics></math></inline-formula>–V<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi mathvariant="normal">A</mi></msub></semantics></math></inline-formula>–V<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi mathvariant="normal">X</mi></msub></semantics></math></inline-formula> complexes.
|