Space Environmental Factor Impacts upon Murine Colon Microbiota and Mucosal Homeostasis.
Astronaut intestinal health may be impacted by microgravity, radiation, and diet. The aim of this study was to characterize how high and low linear energy transfer (LET) radiation, microgravity, and elevated dietary iron affect colon microbiota (determined by 16S rDNA pyrosequencing) and colon funct...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2015-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC4470690?pdf=render |
_version_ | 1819082496636092416 |
---|---|
author | Lauren E Ritchie Stella S Taddeo Brad R Weeks Florence Lima Susan A Bloomfield M Andrea Azcarate-Peril Sara R Zwart Scott M Smith Nancy D Turner |
author_facet | Lauren E Ritchie Stella S Taddeo Brad R Weeks Florence Lima Susan A Bloomfield M Andrea Azcarate-Peril Sara R Zwart Scott M Smith Nancy D Turner |
author_sort | Lauren E Ritchie |
collection | DOAJ |
description | Astronaut intestinal health may be impacted by microgravity, radiation, and diet. The aim of this study was to characterize how high and low linear energy transfer (LET) radiation, microgravity, and elevated dietary iron affect colon microbiota (determined by 16S rDNA pyrosequencing) and colon function. Three independent experiments were conducted to achieve these goals: 1) fractionated low LET γ radiation (137Cs, 3 Gy, RAD), high Fe diet (IRON) (650 mg/kg diet), and a combination of low LET γ radiation and high Fe diet (IRON+RAD) in male Sprague-Dawley rats; 2) high LET 38Si particle exposure (0.050 Gy), 1/6 G partial weight bearing (PWB), and a combination of high LET38Si particle exposure and PWB in female BalbC/ByJ mice; and 3) 13 d spaceflight in female C57BL/6 mice. Low LET radiation, IRON and spaceflight increased Bacteroidetes and decreased Firmicutes. RAD and IRON+RAD increased Lactobacillales and lowered Clostridiales compared to the control (CON) and IRON treatments. Low LET radiation, IRON, and spaceflight did not significantly affect diversity or richness, or elevate pathogenic genera. Spaceflight increased Clostridiales and decreased Lactobacillales, and similar trends were observed in the experiment using a ground-based model of microgravity, suggesting altered gravity may affect colonic microbiota. Although we noted no differences in colon epithelial injury or inflammation, spaceflight elevated TGFβ gene expression. Microbiota and mucosal characterization in these models is a first step in understanding the impact of the space environment on intestinal health. |
first_indexed | 2024-12-21T20:17:36Z |
format | Article |
id | doaj.art-a567b63f0de94ec9bde8f8e95362f033 |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-12-21T20:17:36Z |
publishDate | 2015-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-a567b63f0de94ec9bde8f8e95362f0332022-12-21T18:51:34ZengPublic Library of Science (PLoS)PLoS ONE1932-62032015-01-01106e012579210.1371/journal.pone.0125792Space Environmental Factor Impacts upon Murine Colon Microbiota and Mucosal Homeostasis.Lauren E RitchieStella S TaddeoBrad R WeeksFlorence LimaSusan A BloomfieldM Andrea Azcarate-PerilSara R ZwartScott M SmithNancy D TurnerAstronaut intestinal health may be impacted by microgravity, radiation, and diet. The aim of this study was to characterize how high and low linear energy transfer (LET) radiation, microgravity, and elevated dietary iron affect colon microbiota (determined by 16S rDNA pyrosequencing) and colon function. Three independent experiments were conducted to achieve these goals: 1) fractionated low LET γ radiation (137Cs, 3 Gy, RAD), high Fe diet (IRON) (650 mg/kg diet), and a combination of low LET γ radiation and high Fe diet (IRON+RAD) in male Sprague-Dawley rats; 2) high LET 38Si particle exposure (0.050 Gy), 1/6 G partial weight bearing (PWB), and a combination of high LET38Si particle exposure and PWB in female BalbC/ByJ mice; and 3) 13 d spaceflight in female C57BL/6 mice. Low LET radiation, IRON and spaceflight increased Bacteroidetes and decreased Firmicutes. RAD and IRON+RAD increased Lactobacillales and lowered Clostridiales compared to the control (CON) and IRON treatments. Low LET radiation, IRON, and spaceflight did not significantly affect diversity or richness, or elevate pathogenic genera. Spaceflight increased Clostridiales and decreased Lactobacillales, and similar trends were observed in the experiment using a ground-based model of microgravity, suggesting altered gravity may affect colonic microbiota. Although we noted no differences in colon epithelial injury or inflammation, spaceflight elevated TGFβ gene expression. Microbiota and mucosal characterization in these models is a first step in understanding the impact of the space environment on intestinal health.http://europepmc.org/articles/PMC4470690?pdf=render |
spellingShingle | Lauren E Ritchie Stella S Taddeo Brad R Weeks Florence Lima Susan A Bloomfield M Andrea Azcarate-Peril Sara R Zwart Scott M Smith Nancy D Turner Space Environmental Factor Impacts upon Murine Colon Microbiota and Mucosal Homeostasis. PLoS ONE |
title | Space Environmental Factor Impacts upon Murine Colon Microbiota and Mucosal Homeostasis. |
title_full | Space Environmental Factor Impacts upon Murine Colon Microbiota and Mucosal Homeostasis. |
title_fullStr | Space Environmental Factor Impacts upon Murine Colon Microbiota and Mucosal Homeostasis. |
title_full_unstemmed | Space Environmental Factor Impacts upon Murine Colon Microbiota and Mucosal Homeostasis. |
title_short | Space Environmental Factor Impacts upon Murine Colon Microbiota and Mucosal Homeostasis. |
title_sort | space environmental factor impacts upon murine colon microbiota and mucosal homeostasis |
url | http://europepmc.org/articles/PMC4470690?pdf=render |
work_keys_str_mv | AT laureneritchie spaceenvironmentalfactorimpactsuponmurinecolonmicrobiotaandmucosalhomeostasis AT stellastaddeo spaceenvironmentalfactorimpactsuponmurinecolonmicrobiotaandmucosalhomeostasis AT bradrweeks spaceenvironmentalfactorimpactsuponmurinecolonmicrobiotaandmucosalhomeostasis AT florencelima spaceenvironmentalfactorimpactsuponmurinecolonmicrobiotaandmucosalhomeostasis AT susanabloomfield spaceenvironmentalfactorimpactsuponmurinecolonmicrobiotaandmucosalhomeostasis AT mandreaazcarateperil spaceenvironmentalfactorimpactsuponmurinecolonmicrobiotaandmucosalhomeostasis AT sararzwart spaceenvironmentalfactorimpactsuponmurinecolonmicrobiotaandmucosalhomeostasis AT scottmsmith spaceenvironmentalfactorimpactsuponmurinecolonmicrobiotaandmucosalhomeostasis AT nancydturner spaceenvironmentalfactorimpactsuponmurinecolonmicrobiotaandmucosalhomeostasis |