Single-molecule visualization of human A2A adenosine receptor activation by a G protein and constitutively activating mutations

Abstract Mutations that constitutively activate G protein-coupled receptors (GPCRs), known as constitutively activating mutations (CAMs), modify cell signaling and interfere with drugs, resulting in diseases with limited treatment options. We utilize fluorescence imaging at the single-molecule level...

Full description

Bibliographic Details
Main Authors: Shushu Wei, Niloofar Gopal Pour, Sriram Tiruvadi-Krishnan, Arka Prabha Ray, Naveen Thakur, Matthew T. Eddy, Rajan Lamichhane
Format: Article
Language:English
Published: Nature Portfolio 2023-11-01
Series:Communications Biology
Online Access:https://doi.org/10.1038/s42003-023-05603-6
Description
Summary:Abstract Mutations that constitutively activate G protein-coupled receptors (GPCRs), known as constitutively activating mutations (CAMs), modify cell signaling and interfere with drugs, resulting in diseases with limited treatment options. We utilize fluorescence imaging at the single-molecule level to visualize the dynamic process of CAM-mediated activation of the human A2A adenosine receptor (A2AAR) in real time. We observe an active-state population for all CAMs without agonist stimulation. Importantly, activating mutations significantly increase the population of an intermediate state crucial for receptor activation, notably distinct from the addition of a partner G protein. Activation kinetics show that while CAMs increase the frequency of transitions to the intermediate state, mutations altering sodium sensitivity increase transitions away from it. These findings indicate changes in GPCR function caused by mutations may be predicted based on whether they favor or disfavor formation of an intermediate state, providing a framework for designing receptors with altered functions or therapies that target intermediate states.
ISSN:2399-3642