Fuzzy Interpolation with Extensional Fuzzy Numbers

The article develops further directions stemming from the arithmetic of extensional fuzzy numbers. It presents the existing knowledge of the relationship between the arithmetic and the proposed orderings of extensional fuzzy numbers—so-called <inline-formula><math xmlns="http://www.w3....

Full description

Bibliographic Details
Main Authors: Michal Holčapek, Nicole Škorupová, Martin Štěpnička
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/2/170
_version_ 1797408388666097664
author Michal Holčapek
Nicole Škorupová
Martin Štěpnička
author_facet Michal Holčapek
Nicole Škorupová
Martin Štěpnička
author_sort Michal Holčapek
collection DOAJ
description The article develops further directions stemming from the arithmetic of extensional fuzzy numbers. It presents the existing knowledge of the relationship between the arithmetic and the proposed orderings of extensional fuzzy numbers—so-called <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">S</mi></semantics></math></inline-formula>-orderings—and investigates distinct properties of such orderings. The desirable investigation of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">S</mi></semantics></math></inline-formula>-orderings of extensional fuzzy numbers is directly used in the concept of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">S</mi></semantics></math></inline-formula>-function—a natural extension of the notion of a function that, in its arguments as well as results, uses extensional fuzzy numbers. One of the immediate subsequent applications is fuzzy interpolation. The article provides readers with the basic fuzzy interpolation method, investigation of its properties and an illustrative experimental example on real data. The goal of the paper is, however, much deeper than presenting a single fuzzy interpolation method. It determines direction to a wide variety of fuzzy interpolation as well as other analytical methods stemming from the concept of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">S</mi></semantics></math></inline-formula>-function and from the arithmetic of extensional fuzzy numbers in general.
first_indexed 2024-03-09T03:58:43Z
format Article
id doaj.art-a57f33df0ccf474fbb47780d01502901
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-09T03:58:43Z
publishDate 2021-01-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-a57f33df0ccf474fbb47780d015029012023-12-03T14:17:03ZengMDPI AGSymmetry2073-89942021-01-0113217010.3390/sym13020170Fuzzy Interpolation with Extensional Fuzzy NumbersMichal Holčapek0Nicole Škorupová1Martin Štěpnička2CE IT4Innovations–IRAFM, University of Ostrava, 70103 Ostrava, Czech RepublicCE IT4Innovations–IRAFM, University of Ostrava, 70103 Ostrava, Czech RepublicCE IT4Innovations–IRAFM, University of Ostrava, 70103 Ostrava, Czech RepublicThe article develops further directions stemming from the arithmetic of extensional fuzzy numbers. It presents the existing knowledge of the relationship between the arithmetic and the proposed orderings of extensional fuzzy numbers—so-called <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">S</mi></semantics></math></inline-formula>-orderings—and investigates distinct properties of such orderings. The desirable investigation of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">S</mi></semantics></math></inline-formula>-orderings of extensional fuzzy numbers is directly used in the concept of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">S</mi></semantics></math></inline-formula>-function—a natural extension of the notion of a function that, in its arguments as well as results, uses extensional fuzzy numbers. One of the immediate subsequent applications is fuzzy interpolation. The article provides readers with the basic fuzzy interpolation method, investigation of its properties and an illustrative experimental example on real data. The goal of the paper is, however, much deeper than presenting a single fuzzy interpolation method. It determines direction to a wide variety of fuzzy interpolation as well as other analytical methods stemming from the concept of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">S</mi></semantics></math></inline-formula>-function and from the arithmetic of extensional fuzzy numbers in general.https://www.mdpi.com/2073-8994/13/2/170extensional fuzzy numbersMI-algebrassimilarityarithmetics of fuzzy numbersorderingsfuzzy interpolation
spellingShingle Michal Holčapek
Nicole Škorupová
Martin Štěpnička
Fuzzy Interpolation with Extensional Fuzzy Numbers
Symmetry
extensional fuzzy numbers
MI-algebras
similarity
arithmetics of fuzzy numbers
orderings
fuzzy interpolation
title Fuzzy Interpolation with Extensional Fuzzy Numbers
title_full Fuzzy Interpolation with Extensional Fuzzy Numbers
title_fullStr Fuzzy Interpolation with Extensional Fuzzy Numbers
title_full_unstemmed Fuzzy Interpolation with Extensional Fuzzy Numbers
title_short Fuzzy Interpolation with Extensional Fuzzy Numbers
title_sort fuzzy interpolation with extensional fuzzy numbers
topic extensional fuzzy numbers
MI-algebras
similarity
arithmetics of fuzzy numbers
orderings
fuzzy interpolation
url https://www.mdpi.com/2073-8994/13/2/170
work_keys_str_mv AT michalholcapek fuzzyinterpolationwithextensionalfuzzynumbers
AT nicoleskorupova fuzzyinterpolationwithextensionalfuzzynumbers
AT martinstepnicka fuzzyinterpolationwithextensionalfuzzynumbers