Cell-Free Mitochondrial DNA: An Upcoming Non-Invasive Tool for Diagnosis of BK Polyomavirus-Associated Nephropathy

Mitochondria are essential organelles that possess their own DNA. Mitochondrial dysfunction has been revealed in many kidney diseases, including BK polyomavirus-associated nephropathy (BKPyVAN). In this study, we introduce an innovative approach for non-invasive monitoring of mitochondrial impairmen...

Full description

Bibliographic Details
Main Authors: Luying Guo, Sulin Luo, Xingxia Wang, Nengbo Zhang, Yamei Cheng, Jia Shen, Jianghua Chen, Rending Wang
Format: Article
Language:English
Published: MDPI AG 2024-03-01
Series:Biomolecules
Subjects:
Online Access:https://www.mdpi.com/2218-273X/14/3/348
Description
Summary:Mitochondria are essential organelles that possess their own DNA. Mitochondrial dysfunction has been revealed in many kidney diseases, including BK polyomavirus-associated nephropathy (BKPyVAN). In this study, we introduce an innovative approach for non-invasive monitoring of mitochondrial impairment through urinary donor-derived cell-free mitochondrial DNA (ddcfmtDNA), addressing the crucial challenge of BKPyVAN diagnosis. Urinary samples were collected at the time of biopsy from a total of 60 kidney transplant recipients, comprising 12 with stable function, 22 with T cell-mediated rejection, and 21 with biopsy-proven BKPyVAN. Our findings reveal that the ddcfmtDNA-to-ddcfDNA ratio exhibits superior capability in distinguishing BKPyVAN from other conditions, with a cutoff value of 4.96% (area under curve = 0.933; sensitivity: 71.4%; and specificity: 97.1%). Notably, an elevation of ddcfmtDNA levels is associated with mitochondrial damage, as visualized through electron microscopy. These results underscore the promise of non-invasive monitoring for detecting subtle mitochondrial damage and its potential utility in BKPyVAN diagnosis. Further investigations are required to advance this field of research.
ISSN:2218-273X