Summary: | Hand-based biometrics plays a significant role in establishing security for real-time environments involving human interaction and is found to be more successful in terms of high speed and accuracy. This paper investigates on an integrated approach for personal authentication using Finger Back Knuckle Surface (FBKS) based on two methodologies viz., Angular Geometric Analysis based Feature Extraction Method (AGFEM) and Contourlet Transform based Feature Extraction Method (CTFEM). Based on these methods, this personal authentication system simultaneously extracts shape oriented feature information and textural pattern information of FBKS for authenticating an individual. Furthermore, the proposed geometric and textural analysis methods extract feature information from both proximal phalanx and distal phalanx knuckle regions (FBKS), while the existing works of the literature concentrate only on the features of proximal phalanx knuckle region. The finger joint region found nearer to the tip of the finger is called distal phalanx region of FBKS, which is a unique feature and has greater potentiality toward identification. Extensive experiments conducted using newly created database with 5400 FBKS images and the obtained results infer that the integration of shape oriented features with texture feature information yields excellent accuracy rate of 99.12% with lowest equal error rate of 1.04%.
|