Weak Solution for 3D-Stochastic Third Grade Fluid Equations

This article studies the stochastic evolution of incompressible non-Newtonian fluids of differential type. More precisely, we consider the equations governing the dynamic of a third grade fluid filling a three-dimensional bounded domain <inline-formula><math display="inline">&l...

Full description

Bibliographic Details
Main Authors: Adilson Almeida, Fernanda Cipriano
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/12/11/3211
Description
Summary:This article studies the stochastic evolution of incompressible non-Newtonian fluids of differential type. More precisely, we consider the equations governing the dynamic of a third grade fluid filling a three-dimensional bounded domain <inline-formula><math display="inline"><semantics><mi mathvariant="script">O</mi></semantics></math></inline-formula>, perturbed by a multiplicative white noise. Taking the initial condition in the Sobolev space <inline-formula><math display="inline"><semantics><mrow><msup><mi>H</mi><mn>2</mn></msup><mrow><mo stretchy="false">(</mo><mi mathvariant="script">O</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, and supplementing the equations with a Navier slip boundary condition, we establish the existence of a global weak stochastic solution with sample paths in <inline-formula><math display="inline"><semantics><mrow><msup><mi>L</mi><mo>∞</mo></msup><mrow><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>;</mo><msup><mi>H</mi><mn>2</mn></msup><mrow><mo stretchy="false">(</mo><mi mathvariant="script">O</mi><mo stretchy="false">)</mo></mrow><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>.
ISSN:2073-4441