Weak Solution for 3D-Stochastic Third Grade Fluid Equations

This article studies the stochastic evolution of incompressible non-Newtonian fluids of differential type. More precisely, we consider the equations governing the dynamic of a third grade fluid filling a three-dimensional bounded domain <inline-formula><math display="inline">&l...

Full description

Bibliographic Details
Main Authors: Adilson Almeida, Fernanda Cipriano
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/12/11/3211
_version_ 1797547710345117696
author Adilson Almeida
Fernanda Cipriano
author_facet Adilson Almeida
Fernanda Cipriano
author_sort Adilson Almeida
collection DOAJ
description This article studies the stochastic evolution of incompressible non-Newtonian fluids of differential type. More precisely, we consider the equations governing the dynamic of a third grade fluid filling a three-dimensional bounded domain <inline-formula><math display="inline"><semantics><mi mathvariant="script">O</mi></semantics></math></inline-formula>, perturbed by a multiplicative white noise. Taking the initial condition in the Sobolev space <inline-formula><math display="inline"><semantics><mrow><msup><mi>H</mi><mn>2</mn></msup><mrow><mo stretchy="false">(</mo><mi mathvariant="script">O</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, and supplementing the equations with a Navier slip boundary condition, we establish the existence of a global weak stochastic solution with sample paths in <inline-formula><math display="inline"><semantics><mrow><msup><mi>L</mi><mo>∞</mo></msup><mrow><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>;</mo><msup><mi>H</mi><mn>2</mn></msup><mrow><mo stretchy="false">(</mo><mi mathvariant="script">O</mi><mo stretchy="false">)</mo></mrow><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>.
first_indexed 2024-03-10T14:49:04Z
format Article
id doaj.art-a598d5caba434e2781eaea5cc4f52100
institution Directory Open Access Journal
issn 2073-4441
language English
last_indexed 2024-03-10T14:49:04Z
publishDate 2020-11-01
publisher MDPI AG
record_format Article
series Water
spelling doaj.art-a598d5caba434e2781eaea5cc4f521002023-11-20T21:11:07ZengMDPI AGWater2073-44412020-11-011211321110.3390/w12113211Weak Solution for 3D-Stochastic Third Grade Fluid EquationsAdilson Almeida0Fernanda Cipriano1Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa and Centro de Matemática e Aplicações, Largo da Torre, 2825149 Caparica, PortugalFaculdade de Ciências e Tecnologia da Universidade Nova de Lisboa and Centro de Matemática e Aplicações, Largo da Torre, 2825149 Caparica, PortugalThis article studies the stochastic evolution of incompressible non-Newtonian fluids of differential type. More precisely, we consider the equations governing the dynamic of a third grade fluid filling a three-dimensional bounded domain <inline-formula><math display="inline"><semantics><mi mathvariant="script">O</mi></semantics></math></inline-formula>, perturbed by a multiplicative white noise. Taking the initial condition in the Sobolev space <inline-formula><math display="inline"><semantics><mrow><msup><mi>H</mi><mn>2</mn></msup><mrow><mo stretchy="false">(</mo><mi mathvariant="script">O</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, and supplementing the equations with a Navier slip boundary condition, we establish the existence of a global weak stochastic solution with sample paths in <inline-formula><math display="inline"><semantics><mrow><msup><mi>L</mi><mo>∞</mo></msup><mrow><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>;</mo><msup><mi>H</mi><mn>2</mn></msup><mrow><mo stretchy="false">(</mo><mi mathvariant="script">O</mi><mo stretchy="false">)</mo></mrow><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2073-4441/12/11/3211non-Newtonian fluidstochastic partial differential equationthird grade fluidturbulent flow
spellingShingle Adilson Almeida
Fernanda Cipriano
Weak Solution for 3D-Stochastic Third Grade Fluid Equations
Water
non-Newtonian fluid
stochastic partial differential equation
third grade fluid
turbulent flow
title Weak Solution for 3D-Stochastic Third Grade Fluid Equations
title_full Weak Solution for 3D-Stochastic Third Grade Fluid Equations
title_fullStr Weak Solution for 3D-Stochastic Third Grade Fluid Equations
title_full_unstemmed Weak Solution for 3D-Stochastic Third Grade Fluid Equations
title_short Weak Solution for 3D-Stochastic Third Grade Fluid Equations
title_sort weak solution for 3d stochastic third grade fluid equations
topic non-Newtonian fluid
stochastic partial differential equation
third grade fluid
turbulent flow
url https://www.mdpi.com/2073-4441/12/11/3211
work_keys_str_mv AT adilsonalmeida weaksolutionfor3dstochasticthirdgradefluidequations
AT fernandacipriano weaksolutionfor3dstochasticthirdgradefluidequations