Grid Cyber-Security Strategy in an Attacker-Defender Model

The progression of cyber-attacks on the cyber-physical system is analyzed by the Probabilistic, Learning Attacker, and Dynamic Defender (PLADD) model. Although our research does apply to all cyber-physical systems, we focus on power grid infrastructure. The PLADD model evaluates the effectiveness of...

Full description

Bibliographic Details
Main Authors: Yu-Cheng Chen, Vincent John Mooney, Santiago Grijalva
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Cryptography
Subjects:
Online Access:https://www.mdpi.com/2410-387X/5/2/12
Description
Summary:The progression of cyber-attacks on the cyber-physical system is analyzed by the Probabilistic, Learning Attacker, and Dynamic Defender (PLADD) model. Although our research does apply to all cyber-physical systems, we focus on power grid infrastructure. The PLADD model evaluates the effectiveness of moving target defense (MTD) techniques. We consider the power grid attack scenarios in the AND configurations and OR configurations. In addition, we consider, for the first time ever, power grid attack scenarios involving both AND configurations and OR configurations simultaneously. Cyber-security managers can use the strategy introduced in this manuscript to optimize their defense strategies. Specifically, our research provides insight into when to reset access controls (such as passwords, internet protocol addresses, and session keys), to minimize the probability of a successful attack. Our mathematical proof for the OR configuration of multiple PLADD games shows that it is best if all access controls are reset simultaneously. For the AND configuration, our mathematical proof shows that it is best (in terms of minimizing the attacker′s average probability of success) that the resets are equally spaced apart. We introduce a novel concept called hierarchical parallel PLADD system to cover additional attack scenarios that require combinations of AND and OR configurations.
ISSN:2410-387X