Coarse-Grained Simulations on Polyethylene Crystal Network Formation and Microstructure Analysis

Understanding and characterizing semi-crystalline models with crystalline and amorphous segments is crucial for industrial applications. A coarse-grained molecular dynamics (CGMD) simulations study probed the crystal network formation in high-density polyethylene (HDPE) from melt, and shed light on...

Full description

Bibliographic Details
Main Authors: Mohammed Althaf Hussain, Takashi Yamamoto, Syed Farooq Adil, Shigeru Yao
Format: Article
Language:English
Published: MDPI AG 2024-04-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/16/7/1007
_version_ 1797212026716553216
author Mohammed Althaf Hussain
Takashi Yamamoto
Syed Farooq Adil
Shigeru Yao
author_facet Mohammed Althaf Hussain
Takashi Yamamoto
Syed Farooq Adil
Shigeru Yao
author_sort Mohammed Althaf Hussain
collection DOAJ
description Understanding and characterizing semi-crystalline models with crystalline and amorphous segments is crucial for industrial applications. A coarse-grained molecular dynamics (CGMD) simulations study probed the crystal network formation in high-density polyethylene (HDPE) from melt, and shed light on tensile properties for microstructure analysis. Modified Paul–Yoon–Smith (PYS/R) forcefield parameters are used to compute the interatomic forces among the PE chains. The isothermal crystallization at 300 K and 1 atm predicts the multi-nucleus crystal growth; moreover, the lamellar crystal stems and amorphous region are alternatively oriented. A one-dimensional density distribution along the alternative lamellar stems further confirms the ordering of the lamellar-stack orientation. Using this plastic model preparation approach, the semi-crystalline model density (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mi>c</mi><mi>r</mi></mrow></msub></mrow></semantics></math></inline-formula>) of ca. 0.913 g·cm<sup>−3</sup> and amorphous model density (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mi>a</mi><mi>m</mi></mrow></msub></mrow></semantics></math></inline-formula>) of ca. 0.856 g·cm<sup>−3</sup> are obtained. Furthermore, the ratio of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mi>c</mi><mi>r</mi></mrow></msub></mrow><mo>/</mo><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mi>a</mi><mi>m</mi></mrow></msub></mrow></mrow></mrow></semantics></math></inline-formula> ≈ 1.06 is in good agreement with computational (≈1.096) and experimental (≈1.14) data, ensuring the reliability of the simulations. The degree of crystallinity (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></semantics></math></inline-formula>) of the model is ca. 52% at 300 K. Nevertheless, there is a gradual increase in crystallinity over the specified time, indicating the alignment of the lamellar stems during crystallization. The characteristic stress–strain curve mimicking tensile tests along the z-axis orientation exhibits a reversible sharp elastic regime, tensile strength at yield ca. 100 MPa, and a non-reversible tensile strength at break of 350%. The cavitation mechanism embraces the alignment of lamellar stems along the deformation axis. The study highlights an explanatory model of crystal network formation for the PE model using a PYS/R forcefield, and it produces a microstructure with ordered lamellar and amorphous segments with robust mechanical properties, which aids in predicting the microstructure–mechanical property relationships in plastics under applied forces.
first_indexed 2024-04-24T10:35:50Z
format Article
id doaj.art-a5b7c774512b41d9a37af4144b2b7e56
institution Directory Open Access Journal
issn 2073-4360
language English
last_indexed 2024-04-24T10:35:50Z
publishDate 2024-04-01
publisher MDPI AG
record_format Article
series Polymers
spelling doaj.art-a5b7c774512b41d9a37af4144b2b7e562024-04-12T13:25:19ZengMDPI AGPolymers2073-43602024-04-01167100710.3390/polym16071007Coarse-Grained Simulations on Polyethylene Crystal Network Formation and Microstructure AnalysisMohammed Althaf Hussain0Takashi Yamamoto1Syed Farooq Adil2Shigeru Yao3Central Research Institute, Fukuoka University, Fukuoka 814-0180, JapanGraduate School of Science and Engineering, Yamaguchi University, Yamaguchi 753-8512, JapanDepartment of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi ArabiaCentral Research Institute, Fukuoka University, Fukuoka 814-0180, JapanUnderstanding and characterizing semi-crystalline models with crystalline and amorphous segments is crucial for industrial applications. A coarse-grained molecular dynamics (CGMD) simulations study probed the crystal network formation in high-density polyethylene (HDPE) from melt, and shed light on tensile properties for microstructure analysis. Modified Paul–Yoon–Smith (PYS/R) forcefield parameters are used to compute the interatomic forces among the PE chains. The isothermal crystallization at 300 K and 1 atm predicts the multi-nucleus crystal growth; moreover, the lamellar crystal stems and amorphous region are alternatively oriented. A one-dimensional density distribution along the alternative lamellar stems further confirms the ordering of the lamellar-stack orientation. Using this plastic model preparation approach, the semi-crystalline model density (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mi>c</mi><mi>r</mi></mrow></msub></mrow></semantics></math></inline-formula>) of ca. 0.913 g·cm<sup>−3</sup> and amorphous model density (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mi>a</mi><mi>m</mi></mrow></msub></mrow></semantics></math></inline-formula>) of ca. 0.856 g·cm<sup>−3</sup> are obtained. Furthermore, the ratio of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mi>c</mi><mi>r</mi></mrow></msub></mrow><mo>/</mo><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mi>a</mi><mi>m</mi></mrow></msub></mrow></mrow></mrow></semantics></math></inline-formula> ≈ 1.06 is in good agreement with computational (≈1.096) and experimental (≈1.14) data, ensuring the reliability of the simulations. The degree of crystallinity (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></semantics></math></inline-formula>) of the model is ca. 52% at 300 K. Nevertheless, there is a gradual increase in crystallinity over the specified time, indicating the alignment of the lamellar stems during crystallization. The characteristic stress–strain curve mimicking tensile tests along the z-axis orientation exhibits a reversible sharp elastic regime, tensile strength at yield ca. 100 MPa, and a non-reversible tensile strength at break of 350%. The cavitation mechanism embraces the alignment of lamellar stems along the deformation axis. The study highlights an explanatory model of crystal network formation for the PE model using a PYS/R forcefield, and it produces a microstructure with ordered lamellar and amorphous segments with robust mechanical properties, which aids in predicting the microstructure–mechanical property relationships in plastics under applied forces.https://www.mdpi.com/2073-4360/16/7/1007MD simulationssemi-crystalline structurepolymer physicspolymer networkcrystallizationrelaxation
spellingShingle Mohammed Althaf Hussain
Takashi Yamamoto
Syed Farooq Adil
Shigeru Yao
Coarse-Grained Simulations on Polyethylene Crystal Network Formation and Microstructure Analysis
Polymers
MD simulations
semi-crystalline structure
polymer physics
polymer network
crystallization
relaxation
title Coarse-Grained Simulations on Polyethylene Crystal Network Formation and Microstructure Analysis
title_full Coarse-Grained Simulations on Polyethylene Crystal Network Formation and Microstructure Analysis
title_fullStr Coarse-Grained Simulations on Polyethylene Crystal Network Formation and Microstructure Analysis
title_full_unstemmed Coarse-Grained Simulations on Polyethylene Crystal Network Formation and Microstructure Analysis
title_short Coarse-Grained Simulations on Polyethylene Crystal Network Formation and Microstructure Analysis
title_sort coarse grained simulations on polyethylene crystal network formation and microstructure analysis
topic MD simulations
semi-crystalline structure
polymer physics
polymer network
crystallization
relaxation
url https://www.mdpi.com/2073-4360/16/7/1007
work_keys_str_mv AT mohammedalthafhussain coarsegrainedsimulationsonpolyethylenecrystalnetworkformationandmicrostructureanalysis
AT takashiyamamoto coarsegrainedsimulationsonpolyethylenecrystalnetworkformationandmicrostructureanalysis
AT syedfarooqadil coarsegrainedsimulationsonpolyethylenecrystalnetworkformationandmicrostructureanalysis
AT shigeruyao coarsegrainedsimulationsonpolyethylenecrystalnetworkformationandmicrostructureanalysis