On the oscillatory behavior of even order neutral delay dynamic equations on time-scales

We establish some new criteria for the oscillation of the even order neutral dynamic equation \begin{equation*} \left( a(t)\left( \left( x(t)-p(t)x(\tau (t))\right) ^{\Delta^{n-1}}\right) ^{\alpha }\right) ^{\Delta }+q(t)\left( x^{\sigma}(g(t))\right) ^{\lambda }=0 \end{equation*} on a time scale $\...

Full description

Bibliographic Details
Main Authors: Said Grace, John Graef, Saroj Panigrahi, Ercan Tunç
Format: Article
Language:English
Published: University of Szeged 2012-12-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=1953
_version_ 1797830665807331328
author Said Grace
John Graef
Saroj Panigrahi
Ercan Tunç
author_facet Said Grace
John Graef
Saroj Panigrahi
Ercan Tunç
author_sort Said Grace
collection DOAJ
description We establish some new criteria for the oscillation of the even order neutral dynamic equation \begin{equation*} \left( a(t)\left( \left( x(t)-p(t)x(\tau (t))\right) ^{\Delta^{n-1}}\right) ^{\alpha }\right) ^{\Delta }+q(t)\left( x^{\sigma}(g(t))\right) ^{\lambda }=0 \end{equation*} on a time scale $\mathbb{T}$, where $n \geq 2$ is even, $\alpha $ and $\lambda $ are ratios of odd positive integers, $a$, $p$ and $q$ are real valued positive rd-continuous functions defined on $\mathbb{T}$, and $g$ and $\tau $ are real valued rd-continuous functions on $\mathbb{T}$. Examples illustrating the results are included.
first_indexed 2024-04-09T13:40:45Z
format Article
id doaj.art-a5b9759558664ed8a61424b8a05d2a7f
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:40:45Z
publishDate 2012-12-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-a5b9759558664ed8a61424b8a05d2a7f2023-05-09T07:53:02ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752012-12-0120129611210.14232/ejqtde.2012.1.961953On the oscillatory behavior of even order neutral delay dynamic equations on time-scalesSaid Grace0John Graef1Saroj Panigrahi2Ercan Tunç3Cairo University, Orman, Giza, EgyptUniversity of Tennessee at Chattanooga, Chattanooga, TN, U.S.A.University of Hyderabad, Hyderabad-500046Gaziosmanpasa University, Tokat, TurkeyWe establish some new criteria for the oscillation of the even order neutral dynamic equation \begin{equation*} \left( a(t)\left( \left( x(t)-p(t)x(\tau (t))\right) ^{\Delta^{n-1}}\right) ^{\alpha }\right) ^{\Delta }+q(t)\left( x^{\sigma}(g(t))\right) ^{\lambda }=0 \end{equation*} on a time scale $\mathbb{T}$, where $n \geq 2$ is even, $\alpha $ and $\lambda $ are ratios of odd positive integers, $a$, $p$ and $q$ are real valued positive rd-continuous functions defined on $\mathbb{T}$, and $g$ and $\tau $ are real valued rd-continuous functions on $\mathbb{T}$. Examples illustrating the results are included.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=1953oscillationneutral delay equationstime scalehigher ordereven order
spellingShingle Said Grace
John Graef
Saroj Panigrahi
Ercan Tunç
On the oscillatory behavior of even order neutral delay dynamic equations on time-scales
Electronic Journal of Qualitative Theory of Differential Equations
oscillation
neutral delay equations
time scale
higher order
even order
title On the oscillatory behavior of even order neutral delay dynamic equations on time-scales
title_full On the oscillatory behavior of even order neutral delay dynamic equations on time-scales
title_fullStr On the oscillatory behavior of even order neutral delay dynamic equations on time-scales
title_full_unstemmed On the oscillatory behavior of even order neutral delay dynamic equations on time-scales
title_short On the oscillatory behavior of even order neutral delay dynamic equations on time-scales
title_sort on the oscillatory behavior of even order neutral delay dynamic equations on time scales
topic oscillation
neutral delay equations
time scale
higher order
even order
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=1953
work_keys_str_mv AT saidgrace ontheoscillatorybehaviorofevenorderneutraldelaydynamicequationsontimescales
AT johngraef ontheoscillatorybehaviorofevenorderneutraldelaydynamicequationsontimescales
AT sarojpanigrahi ontheoscillatorybehaviorofevenorderneutraldelaydynamicequationsontimescales
AT ercantunc ontheoscillatorybehaviorofevenorderneutraldelaydynamicequationsontimescales