Truncated Moments for Heavy-Tailed and Related Distribution Classes

Suppose that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>ξ</mi><mo>+</mo></msup></semantics></math></inline-formula> is the positive part of a random...

Full description

Bibliographic Details
Main Authors: Saulius Paukštys, Jonas Šiaulys, Remigijus Leipus
Format: Article
Language:English
Published: MDPI AG 2023-05-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/9/2172
_version_ 1827742865515610112
author Saulius Paukštys
Jonas Šiaulys
Remigijus Leipus
author_facet Saulius Paukštys
Jonas Šiaulys
Remigijus Leipus
author_sort Saulius Paukštys
collection DOAJ
description Suppose that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>ξ</mi><mo>+</mo></msup></semantics></math></inline-formula> is the positive part of a random variable defined on the probability space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi mathvariant="sans-serif">Ω</mi><mo>,</mo><mi mathvariant="script">F</mi><mo>,</mo><mi mathvariant="double-struck">P</mi><mo>)</mo></mrow></semantics></math></inline-formula> with the distribution function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>F</mi><mi>ξ</mi></msub></semantics></math></inline-formula>. When the moment <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="double-struck">E</mi><msup><mfenced open="(" close=")"><msup><mi>ξ</mi><mo>+</mo></msup></mfenced><mi>p</mi></msup></mrow></semantics></math></inline-formula> of order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula> is finite, then the truncated moment <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover><mi>F</mi><mo>¯</mo></mover><mrow><mi>ξ</mi><mo>,</mo><mi>p</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mo movablelimits="true" form="prefix">min</mo><mfenced separators="" open="{" close="}"><mn>1</mn><mo>,</mo><mi mathvariant="double-struck">E</mi><mfenced separators="" open="(" close=")"><msup><mi>ξ</mi><mi>p</mi></msup><mn>1</mn><mspace width="-2.9pt"></mspace><msub><mi mathvariant="normal">I</mi><mrow><mo>{</mo><mi>ξ</mi><mo>></mo><mi>x</mi><mo>}</mo></mrow></msub></mfenced></mfenced></mrow></semantics></math></inline-formula>, defined for all <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>⩾</mo><mn>0</mn></mrow></semantics></math></inline-formula>, is the survival function or, in other words, the distribution tail of the distribution function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>F</mi><mrow><mi>ξ</mi><mo>,</mo><mi>p</mi></mrow></msub></semantics></math></inline-formula>. In this paper, we examine which regularity properties transfer from the distribution function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>F</mi><mi>ξ</mi></msub></semantics></math></inline-formula> to the distribution function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>F</mi><mrow><mi>ξ</mi><mo>,</mo><mi>p</mi></mrow></msub></semantics></math></inline-formula> and which properties transfer from the function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>F</mi><mrow><mi>ξ</mi><mo>,</mo><mi>p</mi></mrow></msub></semantics></math></inline-formula> to the function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>F</mi><mi>ξ</mi></msub></semantics></math></inline-formula>. The construction of the distribution function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>F</mi><mrow><mi>ξ</mi><mo>,</mo><mi>p</mi></mrow></msub></semantics></math></inline-formula> describes the truncated moment transformation of the initial distribution function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>F</mi><mi>ξ</mi></msub></semantics></math></inline-formula>. Our results show that the subclasses of heavy-tailed distributions, such as regularly varying, dominatedly varying, consistently varying and long-tailed distribution classes, are closed under this truncated moment transformation. We also show that exponential-like-tailed and generalized long-tailed distribution classes, which contain both heavy- and light-tailed distributions, are also closed under the truncated moment transformation. On the other hand, we demonstrate that regularly varying and exponential-like-tailed distribution classes also admit inverse transformation closures, i.e., from the condition that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>F</mi><mrow><mi>ξ</mi><mo>,</mo><mi>p</mi></mrow></msub></semantics></math></inline-formula> belongs to one of these classes, it follows that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>F</mi><mi>ξ</mi></msub></semantics></math></inline-formula> also belongs to the corresponding class. In general, the obtained results complement the known closure properties of distribution regularity classes.
first_indexed 2024-03-11T04:13:25Z
format Article
id doaj.art-a5ca532ce704429ba39a2cbd6dec418c
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-11T04:13:25Z
publishDate 2023-05-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-a5ca532ce704429ba39a2cbd6dec418c2023-11-17T23:20:56ZengMDPI AGMathematics2227-73902023-05-01119217210.3390/math11092172Truncated Moments for Heavy-Tailed and Related Distribution ClassesSaulius Paukštys0Jonas Šiaulys1Remigijus Leipus2Institute of Mathematics, Vilnius University, Naugarduko 24, LT-03225 Vilnius, LithuaniaInstitute of Mathematics, Vilnius University, Naugarduko 24, LT-03225 Vilnius, LithuaniaInstitute of Applied Mathematics, Vilnius University, Naugarduko 24, LT-03225 Vilnius, LithuaniaSuppose that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>ξ</mi><mo>+</mo></msup></semantics></math></inline-formula> is the positive part of a random variable defined on the probability space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi mathvariant="sans-serif">Ω</mi><mo>,</mo><mi mathvariant="script">F</mi><mo>,</mo><mi mathvariant="double-struck">P</mi><mo>)</mo></mrow></semantics></math></inline-formula> with the distribution function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>F</mi><mi>ξ</mi></msub></semantics></math></inline-formula>. When the moment <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="double-struck">E</mi><msup><mfenced open="(" close=")"><msup><mi>ξ</mi><mo>+</mo></msup></mfenced><mi>p</mi></msup></mrow></semantics></math></inline-formula> of order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula> is finite, then the truncated moment <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover><mi>F</mi><mo>¯</mo></mover><mrow><mi>ξ</mi><mo>,</mo><mi>p</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mo movablelimits="true" form="prefix">min</mo><mfenced separators="" open="{" close="}"><mn>1</mn><mo>,</mo><mi mathvariant="double-struck">E</mi><mfenced separators="" open="(" close=")"><msup><mi>ξ</mi><mi>p</mi></msup><mn>1</mn><mspace width="-2.9pt"></mspace><msub><mi mathvariant="normal">I</mi><mrow><mo>{</mo><mi>ξ</mi><mo>></mo><mi>x</mi><mo>}</mo></mrow></msub></mfenced></mfenced></mrow></semantics></math></inline-formula>, defined for all <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>⩾</mo><mn>0</mn></mrow></semantics></math></inline-formula>, is the survival function or, in other words, the distribution tail of the distribution function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>F</mi><mrow><mi>ξ</mi><mo>,</mo><mi>p</mi></mrow></msub></semantics></math></inline-formula>. In this paper, we examine which regularity properties transfer from the distribution function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>F</mi><mi>ξ</mi></msub></semantics></math></inline-formula> to the distribution function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>F</mi><mrow><mi>ξ</mi><mo>,</mo><mi>p</mi></mrow></msub></semantics></math></inline-formula> and which properties transfer from the function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>F</mi><mrow><mi>ξ</mi><mo>,</mo><mi>p</mi></mrow></msub></semantics></math></inline-formula> to the function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>F</mi><mi>ξ</mi></msub></semantics></math></inline-formula>. The construction of the distribution function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>F</mi><mrow><mi>ξ</mi><mo>,</mo><mi>p</mi></mrow></msub></semantics></math></inline-formula> describes the truncated moment transformation of the initial distribution function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>F</mi><mi>ξ</mi></msub></semantics></math></inline-formula>. Our results show that the subclasses of heavy-tailed distributions, such as regularly varying, dominatedly varying, consistently varying and long-tailed distribution classes, are closed under this truncated moment transformation. We also show that exponential-like-tailed and generalized long-tailed distribution classes, which contain both heavy- and light-tailed distributions, are also closed under the truncated moment transformation. On the other hand, we demonstrate that regularly varying and exponential-like-tailed distribution classes also admit inverse transformation closures, i.e., from the condition that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>F</mi><mrow><mi>ξ</mi><mo>,</mo><mi>p</mi></mrow></msub></semantics></math></inline-formula> belongs to one of these classes, it follows that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>F</mi><mi>ξ</mi></msub></semantics></math></inline-formula> also belongs to the corresponding class. In general, the obtained results complement the known closure properties of distribution regularity classes.https://www.mdpi.com/2227-7390/11/9/2172truncated momentalternative moment formulaheavy-tailed distributiondominated variationconsistent variationregular variation
spellingShingle Saulius Paukštys
Jonas Šiaulys
Remigijus Leipus
Truncated Moments for Heavy-Tailed and Related Distribution Classes
Mathematics
truncated moment
alternative moment formula
heavy-tailed distribution
dominated variation
consistent variation
regular variation
title Truncated Moments for Heavy-Tailed and Related Distribution Classes
title_full Truncated Moments for Heavy-Tailed and Related Distribution Classes
title_fullStr Truncated Moments for Heavy-Tailed and Related Distribution Classes
title_full_unstemmed Truncated Moments for Heavy-Tailed and Related Distribution Classes
title_short Truncated Moments for Heavy-Tailed and Related Distribution Classes
title_sort truncated moments for heavy tailed and related distribution classes
topic truncated moment
alternative moment formula
heavy-tailed distribution
dominated variation
consistent variation
regular variation
url https://www.mdpi.com/2227-7390/11/9/2172
work_keys_str_mv AT sauliuspaukstys truncatedmomentsforheavytailedandrelateddistributionclasses
AT jonassiaulys truncatedmomentsforheavytailedandrelateddistributionclasses
AT remigijusleipus truncatedmomentsforheavytailedandrelateddistributionclasses