Kernel Parameter Selection for Support Vector Machine Classification

Parameter selection for kernel functions is important to the robust classification performance of a support vector machine (SVM). This paper introduces a parameter selection method for kernel functions in SVM. The proposed method tries to estimate the class separability by cosine similarity in the k...

詳細記述

書誌詳細
主要な著者: Zhiliang Liu, Hongbing Xu
フォーマット: 論文
言語:English
出版事項: SAGE Publishing 2014-06-01
シリーズ:Journal of Algorithms & Computational Technology
オンライン・アクセス:https://doi.org/10.1260/1748-3018.8.2.163