Kernel Parameter Selection for Support Vector Machine Classification

Parameter selection for kernel functions is important to the robust classification performance of a support vector machine (SVM). This paper introduces a parameter selection method for kernel functions in SVM. The proposed method tries to estimate the class separability by cosine similarity in the k...

Volledige beschrijving

Bibliografische gegevens
Hoofdauteurs: Zhiliang Liu, Hongbing Xu
Formaat: Artikel
Taal:English
Gepubliceerd in: SAGE Publishing 2014-06-01
Reeks:Journal of Algorithms & Computational Technology
Online toegang:https://doi.org/10.1260/1748-3018.8.2.163