Measurement and calculation of neutron energy spectrum in TRR irradiation facilities: a feasibility study of using TRR for BNCT

An investigation has been made for the use of Tehran Research Reactor (TRR) as a neutron source for the boron neutron capture therapy (BNCT) by calculating and measuring the energy spectrum and spatial distribution of neutrons in all external irradiation facilities, including six beam tubes, thermal...

Full description

Bibliographic Details
Main Authors: Yaser kasesaz, Hossein Khalafi, Faezeh Rahmani, Arsalan Ezati, Ashkan Hosnirokh, Mehdi Keyvani
Format: Article
Language:fas
Published: Nuclear Science and Technology Research Institute 2015-11-01
Series:مجله علوم و فنون هسته‌ای
Subjects:
Online Access:https://jonsat.nstri.ir/article_7_20518b15a238b1236f57da07a44b5841.pdf
Description
Summary:An investigation has been made for the use of Tehran Research Reactor (TRR) as a neutron source for the boron neutron capture therapy (BNCT) by calculating and measuring the energy spectrum and spatial distribution of neutrons in all external irradiation facilities, including six beam tubes, thermal column, and medical room. Activation methods with multi-foils and a copper wire have been used for the measurements. The results showed that: (1) small diameter and long length beam tubes cannot provide sufficient neutron flux for the BNCT; (2) for using the medical room, the TRR core should be placed in the open pool position. In this situation, the distance between the core and patient position is about 400 cm, so the neutron flux cannot be sufficient for the BNCT; (3) the best facility which can be adapted for the BNCT application is the thermal column if all graphite blocks can be removed. The non-thermal neutron flux at the beginning of this empty column is 5.33×109 cm-2 s-1, where it can provide an appropriate neutron beam for the BNCT.
ISSN:1735-1871
2676-5861