An Intuitive Formulation of the Human Arm Active Endpoint Stiffness

In this work, we propose an intuitive and real-time model of the human arm active endpoint stiffness. In our model, the symmetric and positive-definite stiffness matrix is constructed through the eigendecomposition <inline-formula><math display="inline"><semantics><mro...

Full description

Bibliographic Details
Main Authors: Yuqiang Wu, Fei Zhao, Wansoo Kim, Arash Ajoudani
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/20/18/5357
_version_ 1797553257664479232
author Yuqiang Wu
Fei Zhao
Wansoo Kim
Arash Ajoudani
author_facet Yuqiang Wu
Fei Zhao
Wansoo Kim
Arash Ajoudani
author_sort Yuqiang Wu
collection DOAJ
description In this work, we propose an intuitive and real-time model of the human arm active endpoint stiffness. In our model, the symmetric and positive-definite stiffness matrix is constructed through the eigendecomposition <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="bold-italic">K</mi><mi>c</mi></msub><mo>=</mo><mi mathvariant="bold-italic">V</mi><mi mathvariant="bold-italic">D</mi><msup><mi mathvariant="bold-italic">V</mi><mi>T</mi></msup></mrow></semantics></math></inline-formula>, where <inline-formula><math display="inline"><semantics><mi mathvariant="bold-italic">V</mi></semantics></math></inline-formula> is an orthonormal matrix whose columns are the normalized eigenvectors of <inline-formula><math display="inline"><semantics><msub><mi mathvariant="bold-italic">K</mi><mi>c</mi></msub></semantics></math></inline-formula>, and <inline-formula><math display="inline"><semantics><mi mathvariant="bold-italic">D</mi></semantics></math></inline-formula> is a diagonal matrix whose entries are the eigenvalues of <inline-formula><math display="inline"><semantics><msub><mi mathvariant="bold-italic">K</mi><mi>c</mi></msub></semantics></math></inline-formula>. In this formulation, we propose to construct <inline-formula><math display="inline"><semantics><mi mathvariant="bold-italic">V</mi></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><mi mathvariant="bold-italic">D</mi></semantics></math></inline-formula> directly by exploiting the geometric information from a reduced human arm skeleton structure in 3D and from the assumption that human arm muscles work synergistically when co-contracted. Through the perturbation experiments across multiple subjects under different arm configurations and muscle activation states, we identified the model parameters and examined the modeling accuracy. In comparison to our previous models for predicting human active arm endpoint stiffness, the new model offers significant advantages such as fast identification and personalization due to its principled simplicity. The proposed model is suitable for applications such as teleoperation, human–robot interaction and collaboration, and human ergonomic assessments, where a personalizable and real-time human kinodynamic model is a crucial requirement.
first_indexed 2024-03-10T16:13:49Z
format Article
id doaj.art-a600beb2708e4a25a1d44d770828da7d
institution Directory Open Access Journal
issn 1424-8220
language English
last_indexed 2024-03-10T16:13:49Z
publishDate 2020-09-01
publisher MDPI AG
record_format Article
series Sensors
spelling doaj.art-a600beb2708e4a25a1d44d770828da7d2023-11-20T14:16:14ZengMDPI AGSensors1424-82202020-09-012018535710.3390/s20185357An Intuitive Formulation of the Human Arm Active Endpoint StiffnessYuqiang Wu0Fei Zhao1Wansoo Kim2Arash Ajoudani3State Key Laboratory for Manufacturing System Engineering, Xi’an Jiaotong University, Xi’an 710049, ChinaState Key Laboratory for Manufacturing System Engineering, Xi’an Jiaotong University, Xi’an 710049, ChinaHuman Robot Interfaces and physical Interaction lab (HRI<sup>2</sup>), Istituto Italiano di Tecnologia (IIT), 16163 Genova, ItalyHuman Robot Interfaces and physical Interaction lab (HRI<sup>2</sup>), Istituto Italiano di Tecnologia (IIT), 16163 Genova, ItalyIn this work, we propose an intuitive and real-time model of the human arm active endpoint stiffness. In our model, the symmetric and positive-definite stiffness matrix is constructed through the eigendecomposition <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="bold-italic">K</mi><mi>c</mi></msub><mo>=</mo><mi mathvariant="bold-italic">V</mi><mi mathvariant="bold-italic">D</mi><msup><mi mathvariant="bold-italic">V</mi><mi>T</mi></msup></mrow></semantics></math></inline-formula>, where <inline-formula><math display="inline"><semantics><mi mathvariant="bold-italic">V</mi></semantics></math></inline-formula> is an orthonormal matrix whose columns are the normalized eigenvectors of <inline-formula><math display="inline"><semantics><msub><mi mathvariant="bold-italic">K</mi><mi>c</mi></msub></semantics></math></inline-formula>, and <inline-formula><math display="inline"><semantics><mi mathvariant="bold-italic">D</mi></semantics></math></inline-formula> is a diagonal matrix whose entries are the eigenvalues of <inline-formula><math display="inline"><semantics><msub><mi mathvariant="bold-italic">K</mi><mi>c</mi></msub></semantics></math></inline-formula>. In this formulation, we propose to construct <inline-formula><math display="inline"><semantics><mi mathvariant="bold-italic">V</mi></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><mi mathvariant="bold-italic">D</mi></semantics></math></inline-formula> directly by exploiting the geometric information from a reduced human arm skeleton structure in 3D and from the assumption that human arm muscles work synergistically when co-contracted. Through the perturbation experiments across multiple subjects under different arm configurations and muscle activation states, we identified the model parameters and examined the modeling accuracy. In comparison to our previous models for predicting human active arm endpoint stiffness, the new model offers significant advantages such as fast identification and personalization due to its principled simplicity. The proposed model is suitable for applications such as teleoperation, human–robot interaction and collaboration, and human ergonomic assessments, where a personalizable and real-time human kinodynamic model is a crucial requirement.https://www.mdpi.com/1424-8220/20/18/5357human factorsphysical human–robot collaborationrobot adaptation and learning
spellingShingle Yuqiang Wu
Fei Zhao
Wansoo Kim
Arash Ajoudani
An Intuitive Formulation of the Human Arm Active Endpoint Stiffness
Sensors
human factors
physical human–robot collaboration
robot adaptation and learning
title An Intuitive Formulation of the Human Arm Active Endpoint Stiffness
title_full An Intuitive Formulation of the Human Arm Active Endpoint Stiffness
title_fullStr An Intuitive Formulation of the Human Arm Active Endpoint Stiffness
title_full_unstemmed An Intuitive Formulation of the Human Arm Active Endpoint Stiffness
title_short An Intuitive Formulation of the Human Arm Active Endpoint Stiffness
title_sort intuitive formulation of the human arm active endpoint stiffness
topic human factors
physical human–robot collaboration
robot adaptation and learning
url https://www.mdpi.com/1424-8220/20/18/5357
work_keys_str_mv AT yuqiangwu anintuitiveformulationofthehumanarmactiveendpointstiffness
AT feizhao anintuitiveformulationofthehumanarmactiveendpointstiffness
AT wansookim anintuitiveformulationofthehumanarmactiveendpointstiffness
AT arashajoudani anintuitiveformulationofthehumanarmactiveendpointstiffness
AT yuqiangwu intuitiveformulationofthehumanarmactiveendpointstiffness
AT feizhao intuitiveformulationofthehumanarmactiveendpointstiffness
AT wansookim intuitiveformulationofthehumanarmactiveendpointstiffness
AT arashajoudani intuitiveformulationofthehumanarmactiveendpointstiffness