Even Order Half-Linear Differential Equations with Regularly Varying Coefficients

We establish nonoscillation criterion for the even order half-linear differential equation <inline-formula><math display="inline"><semantics><mrow><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mr...

Full description

Bibliographic Details
Main Author: Vojtěch Růžička
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/8/1236
_version_ 1797561165724778496
author Vojtěch Růžička
author_facet Vojtěch Růžička
author_sort Vojtěch Růžička
collection DOAJ
description We establish nonoscillation criterion for the even order half-linear differential equation <inline-formula><math display="inline"><semantics><mrow><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mi>n</mi></msup><msup><mfenced separators="" open="(" close=")"><msub><mi>f</mi><mi>n</mi></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>Φ</mo><mfenced separators="" open="(" close=")"><msup><mi>x</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></mfenced></mfenced><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup><mo>+</mo><msubsup><mo>∑</mo><mrow><mi>l</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>n</mi><mo>−</mo><mi>l</mi></mrow></msup><msub><mi>β</mi><mrow><mi>n</mi><mo>−</mo><mi>l</mi></mrow></msub><msup><mfenced separators="" open="(" close=")"><msub><mi>f</mi><mrow><mi>n</mi><mo>−</mo><mi>l</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>Φ</mo><mfenced separators="" open="(" close=")"><msup><mi>x</mi><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mi>l</mi><mo>)</mo></mrow></msup></mfenced></mfenced><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mi>l</mi><mo>)</mo></mrow></msup><mo>=</mo><mn>0</mn><mo>,</mo></mrow></semantics></math></inline-formula> where <inline-formula><math display="inline"><semantics><mrow><msub><mi>β</mi><mn>0</mn></msub><mo>,</mo><msub><mi>β</mi><mn>1</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mi>β</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></semantics></math></inline-formula> are real numbers, <inline-formula><math display="inline"><semantics><mrow><mi>n</mi><mo>∈</mo><mi mathvariant="double-struck">N</mi></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><mrow><mo>Φ</mo><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>=</mo><msup><mfenced open="|" close="|"><mi>s</mi></mfenced><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>sgn</mi><mi>s</mi></mrow></semantics></math></inline-formula> for <inline-formula><math display="inline"><semantics><mrow><mi>s</mi><mo>∈</mo><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><mrow><mi>p</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></mrow></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><msub><mi>f</mi><mrow><mi>n</mi><mo>−</mo><mi>l</mi></mrow></msub></semantics></math></inline-formula> is a regularly varying (at infinity) function of the index <inline-formula><math display="inline"><semantics><mrow><mi>α</mi><mo>−</mo><mi>l</mi><mi>p</mi></mrow></semantics></math></inline-formula> for <inline-formula><math display="inline"><semantics><mrow><mi>l</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi></mrow></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>. This equation can be understood as a generalization of the even order Euler type half-linear differential equation. We obtain this Euler type equation by rewriting the equation above as follows: the terms <inline-formula><math display="inline"><semantics><mrow><msub><mi>f</mi><mi>n</mi></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><mrow><msub><mi>f</mi><mrow><mi>n</mi><mo>−</mo><mi>l</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> are replaced by the <inline-formula><math display="inline"><semantics><msup><mi>t</mi><mi>α</mi></msup></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><msup><mi>t</mi><mrow><mi>α</mi><mo>−</mo><mi>l</mi><mi>p</mi></mrow></msup></semantics></math></inline-formula>, respectively. Unlike in other texts dealing with the Euler type equation, in this article an approach based on the theory of regularly varying functions is used. We establish a nonoscillation criterion by utilizing the variational technique.
first_indexed 2024-03-10T18:11:20Z
format Article
id doaj.art-a60b21c1784a48e9829b228cc11fc786
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T18:11:20Z
publishDate 2020-07-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-a60b21c1784a48e9829b228cc11fc7862023-11-20T08:07:40ZengMDPI AGMathematics2227-73902020-07-0188123610.3390/math8081236Even Order Half-Linear Differential Equations with Regularly Varying CoefficientsVojtěch Růžička0Department of Mathematics and Physics, Faculty of Military Technology, University of Defence in Brno, Kounicova 65, 662 10 Brno, Czech RepublicWe establish nonoscillation criterion for the even order half-linear differential equation <inline-formula><math display="inline"><semantics><mrow><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mi>n</mi></msup><msup><mfenced separators="" open="(" close=")"><msub><mi>f</mi><mi>n</mi></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>Φ</mo><mfenced separators="" open="(" close=")"><msup><mi>x</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></mfenced></mfenced><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup><mo>+</mo><msubsup><mo>∑</mo><mrow><mi>l</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>n</mi><mo>−</mo><mi>l</mi></mrow></msup><msub><mi>β</mi><mrow><mi>n</mi><mo>−</mo><mi>l</mi></mrow></msub><msup><mfenced separators="" open="(" close=")"><msub><mi>f</mi><mrow><mi>n</mi><mo>−</mo><mi>l</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>Φ</mo><mfenced separators="" open="(" close=")"><msup><mi>x</mi><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mi>l</mi><mo>)</mo></mrow></msup></mfenced></mfenced><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mi>l</mi><mo>)</mo></mrow></msup><mo>=</mo><mn>0</mn><mo>,</mo></mrow></semantics></math></inline-formula> where <inline-formula><math display="inline"><semantics><mrow><msub><mi>β</mi><mn>0</mn></msub><mo>,</mo><msub><mi>β</mi><mn>1</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mi>β</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></semantics></math></inline-formula> are real numbers, <inline-formula><math display="inline"><semantics><mrow><mi>n</mi><mo>∈</mo><mi mathvariant="double-struck">N</mi></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><mrow><mo>Φ</mo><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>=</mo><msup><mfenced open="|" close="|"><mi>s</mi></mfenced><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>sgn</mi><mi>s</mi></mrow></semantics></math></inline-formula> for <inline-formula><math display="inline"><semantics><mrow><mi>s</mi><mo>∈</mo><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><mrow><mi>p</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></mrow></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><msub><mi>f</mi><mrow><mi>n</mi><mo>−</mo><mi>l</mi></mrow></msub></semantics></math></inline-formula> is a regularly varying (at infinity) function of the index <inline-formula><math display="inline"><semantics><mrow><mi>α</mi><mo>−</mo><mi>l</mi><mi>p</mi></mrow></semantics></math></inline-formula> for <inline-formula><math display="inline"><semantics><mrow><mi>l</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi></mrow></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>. This equation can be understood as a generalization of the even order Euler type half-linear differential equation. We obtain this Euler type equation by rewriting the equation above as follows: the terms <inline-formula><math display="inline"><semantics><mrow><msub><mi>f</mi><mi>n</mi></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><mrow><msub><mi>f</mi><mrow><mi>n</mi><mo>−</mo><mi>l</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> are replaced by the <inline-formula><math display="inline"><semantics><msup><mi>t</mi><mi>α</mi></msup></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><msup><mi>t</mi><mrow><mi>α</mi><mo>−</mo><mi>l</mi><mi>p</mi></mrow></msup></semantics></math></inline-formula>, respectively. Unlike in other texts dealing with the Euler type equation, in this article an approach based on the theory of regularly varying functions is used. We establish a nonoscillation criterion by utilizing the variational technique.https://www.mdpi.com/2227-7390/8/8/1236higher order half-linear differential equationnonoscillation criterionvariational principleenergy functionalregular variation
spellingShingle Vojtěch Růžička
Even Order Half-Linear Differential Equations with Regularly Varying Coefficients
Mathematics
higher order half-linear differential equation
nonoscillation criterion
variational principle
energy functional
regular variation
title Even Order Half-Linear Differential Equations with Regularly Varying Coefficients
title_full Even Order Half-Linear Differential Equations with Regularly Varying Coefficients
title_fullStr Even Order Half-Linear Differential Equations with Regularly Varying Coefficients
title_full_unstemmed Even Order Half-Linear Differential Equations with Regularly Varying Coefficients
title_short Even Order Half-Linear Differential Equations with Regularly Varying Coefficients
title_sort even order half linear differential equations with regularly varying coefficients
topic higher order half-linear differential equation
nonoscillation criterion
variational principle
energy functional
regular variation
url https://www.mdpi.com/2227-7390/8/8/1236
work_keys_str_mv AT vojtechruzicka evenorderhalflineardifferentialequationswithregularlyvaryingcoefficients