Research into a Method of Forming Neutral Point Voltage in a Three-Phase Four-Wire Voltage Inverter

Three-phase four-wire voltage inverters are commonly used in energy complexes based on distributed generation sources (solar panels, wind power plants, hydrogen fuel cells) and accumulator batteries. They allow to power loads, including single-phase ones, which require neutral point connection. In t...

Full description

Bibliographic Details
Main Authors: Andrey Dar’enkov, Andrey Kurkin, Anton Sluzov, Ivan Berdnikov, Anton Khramov, Andrey Shalukho
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/16/15/5739
Description
Summary:Three-phase four-wire voltage inverters are commonly used in energy complexes based on distributed generation sources (solar panels, wind power plants, hydrogen fuel cells) and accumulator batteries. They allow to power loads, including single-phase ones, which require neutral point connection. In these cases, phase voltage formed by spatial pulse-width modulation (PWM) methods considerably differs from sinusoidal waves and has high total harmonic distortions of voltage and current curves. This article is devoted to research into the authors’ control method of a three-phase four-wire inverter, allowing for the rectification of the form of phase voltage supplying the load when applying the most common PWM (SVPWM, DPWMMIN, DPWMMAX, GDPWM) methods. The description of the method and its research results by simulation modeling and test bench are presented in the article. The simulation modeling was carried out by the developed Simulink-model of the three-phase four-wire inverter and its control system. The modeling results showed that the method application ensures sinusoidal voltage form when applying any PWM method. At this, THD<i><sub>U</sub></i> was reduced from 21.56% to 4.39%, while THD<i><sub>I</sub></i> was reduced from 21.16% to 1.69%. Experimental tests were carried out by a test bench featuring an uninterruptible power supply source. The authors researched the inverter operation as a component of the test bench under the control of the proposed method to form neutral point voltage. The experimental test results coincided with the simulation modeling results.
ISSN:1996-1073