Amidoxime Modified UiO-66@PIM-1 Mixed-Matrix Membranes to Enhance CO<sub>2</sub> Separation and Anti-Aging Performance

Mixed matrix membranes (MMMs) generally have some fatal defects, such as poor compatibility between the two phases leading to non-selective pores. In this work, PIM-1 was chosen as the polymer matrix, and UiO-66 modified with amidoxime (UiO-66-AO) was used as the filler to prepare the MMMs. In the M...

Full description

Bibliographic Details
Main Authors: Jiaming Gao, Yongchao Sun, Feifei Kang, Fei Guo, Gaohong He, Hanli Wang, Zhendong Yang, Canghai Ma, Xiaobin Jiang, Wu Xiao
Format: Article
Language:English
Published: MDPI AG 2023-09-01
Series:Membranes
Subjects:
Online Access:https://www.mdpi.com/2077-0375/13/9/781
Description
Summary:Mixed matrix membranes (MMMs) generally have some fatal defects, such as poor compatibility between the two phases leading to non-selective pores. In this work, PIM-1 was chosen as the polymer matrix, and UiO-66 modified with amidoxime (UiO-66-AO) was used as the filler to prepare the MMMs. In the MMMs, the amino and hydroxyl groups on UO-66-AO form a rich hydrogen bond network with the N and O atoms in the polymer PIM-1 chain to improve the compatibility between the polymer matrix and the filler. In addition, the selective adsorption of CO<sub>2</sub> by the amidoxime group can promote the transport of CO<sub>2</sub> in the membrane, which enhances the gas selectivity. The CO<sub>2</sub> permeability and CO<sub>2</sub>/N<sub>2</sub> selectivity of UiO-66-AO@PIM-1 MMMs are increased by 35.2% and 45.2% compared to pure PIM-1 membranes, reaching 7535.5 Barrer and 26.9, surpassing the Robeson Upper Bound (2008) and close to the 2019 Upper Bound. After 38 days of the aging experiment, the CO<sub>2</sub> permeability is approximately 74% of the original. The results show that the addition of UiO-66-AO has an obvious effect on improving the aging properties of the membrane. The UiO-66-AO@PIM-1 MMMs have a bright prospect for CO<sub>2</sub> separation in the future.
ISSN:2077-0375