Summary: | Timely diagnosis of drug-resistant tuberculosis (DR-TB) is beneficial for case treatment and management. We implemented an algorithm to improve molecular diagnostic utilization to intensify DR-TB case findings. The GeneXpert MTB/RIF (Xpert) test was used for initial diagnosis. Samples with Mycobacterium tuberculosis complex (MTBC)-positive and rifampicin resistance (RR) results were subsequently and simultaneously tested using the GenoType MTBDRplus (DRplus) and MTBDRsl (DRsl) tests. This prospective cohort study enrolled 2957 high-risk DR-TB cases. We tested sputum specimens using conventional mycobacteriological and molecular tests. Gene sequencing was performed to resolve discordant results. According to the Xpert test, 33.6% of specimens were MTBC-positive and 5.1% were RR. RR specimens were further analyzed in the DRplus and DRsl tests. We identified 1 extensively drug-resistant (XDR), 8 pre-XDR, 18 simple multidrug-resistant (MDR), 22 mono-RR, and 2 RR cases with concurrent second-line injection DR-TB. Of these, 25 (49%) were relapses, 13 (25.5%) were treatment failures, 10 (19.6%) were from MDR-TB high-incidence areas/countries, 1 was from MDR-TB contact and 2 were unknown. Among culture-positive TB cases, the sensitivities, specificities, and positive predictive values (PPVs) of the Xpert test and RR cases were 73.6% and 100.0%, 85.7% and 98.6%, and 73.5% and 80.0%, respectively. Gene sequencing of discordant results revealed 7 disputed rpoB mutations and 2 silent mutations for RIF, 1 ahpC mutation for isoniazid and 1 gyrA mutation for fluoroquinolone. The algorithm effectively identified approximately 23% of annual MDR-/XDR-TB and 37.5% of RR-TB cases that were enrolled in our DR-TB treatment and management program within 3 days.
|