Intuitionistic fuzzy I-convergent Fibonacci difference sequence spaces
Abstract Fibonacci difference matrix was defined by Kara in his paper (Kara in J. Inequal. Appl. 2013:38 2013). Recently, Khan et al. (Adv. Differ. Equ. 2018:199, 2018) using the Fibonacci difference matrix F̂ and ideal convergence defined the notion of c0I(Fˆ) $c_{0}^{I}(\hat{F})$, cI(Fˆ) $c^{I}(\h...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2019-07-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13660-019-2152-1 |
_version_ | 1818552553824059392 |
---|---|
author | Vakeel A. Khan Emrah E. Kara Henna Altaf Nazneen Khan Mobeen Ahmad |
author_facet | Vakeel A. Khan Emrah E. Kara Henna Altaf Nazneen Khan Mobeen Ahmad |
author_sort | Vakeel A. Khan |
collection | DOAJ |
description | Abstract Fibonacci difference matrix was defined by Kara in his paper (Kara in J. Inequal. Appl. 2013:38 2013). Recently, Khan et al. (Adv. Differ. Equ. 2018:199, 2018) using the Fibonacci difference matrix F̂ and ideal convergence defined the notion of c0I(Fˆ) $c_{0}^{I}(\hat{F})$, cI(Fˆ) $c^{I}(\hat{F})$ and l∞I(Fˆ) $l_{\infty }^{I}(\hat{F})$. In this paper, we give the ideal convergence of Fibonacci difference sequence space in intuitionistic fuzzy normed space with respect to fuzzy norm (μ,ν) $(\mu ,\nu )$. Moreover, we investigate some basic properties of the said spaces such as linearity, hausdorffness. |
first_indexed | 2024-12-12T09:14:42Z |
format | Article |
id | doaj.art-a63984ce69f040d8ae90ac4a29888fc2 |
institution | Directory Open Access Journal |
issn | 1029-242X |
language | English |
last_indexed | 2024-12-12T09:14:42Z |
publishDate | 2019-07-01 |
publisher | SpringerOpen |
record_format | Article |
series | Journal of Inequalities and Applications |
spelling | doaj.art-a63984ce69f040d8ae90ac4a29888fc22022-12-22T00:29:25ZengSpringerOpenJournal of Inequalities and Applications1029-242X2019-07-01201911710.1186/s13660-019-2152-1Intuitionistic fuzzy I-convergent Fibonacci difference sequence spacesVakeel A. Khan0Emrah E. Kara1Henna Altaf2Nazneen Khan3Mobeen Ahmad4Department of Mathematics, Aligarh Muslim UniversityDepartment of Mathematics, Duzce UniversityDepartment of Mathematics, Aligarh Muslim UniversityDepartment of Mathematics, Taibah UniversityDepartment of Mathematics, Aligarh Muslim UniversityAbstract Fibonacci difference matrix was defined by Kara in his paper (Kara in J. Inequal. Appl. 2013:38 2013). Recently, Khan et al. (Adv. Differ. Equ. 2018:199, 2018) using the Fibonacci difference matrix F̂ and ideal convergence defined the notion of c0I(Fˆ) $c_{0}^{I}(\hat{F})$, cI(Fˆ) $c^{I}(\hat{F})$ and l∞I(Fˆ) $l_{\infty }^{I}(\hat{F})$. In this paper, we give the ideal convergence of Fibonacci difference sequence space in intuitionistic fuzzy normed space with respect to fuzzy norm (μ,ν) $(\mu ,\nu )$. Moreover, we investigate some basic properties of the said spaces such as linearity, hausdorffness.http://link.springer.com/article/10.1186/s13660-019-2152-1Difference sequence spaceFibonacci numbersFibonacci difference matrixIntuitionistic fuzzy normed spaceI-convergence |
spellingShingle | Vakeel A. Khan Emrah E. Kara Henna Altaf Nazneen Khan Mobeen Ahmad Intuitionistic fuzzy I-convergent Fibonacci difference sequence spaces Journal of Inequalities and Applications Difference sequence space Fibonacci numbers Fibonacci difference matrix Intuitionistic fuzzy normed space I-convergence |
title | Intuitionistic fuzzy I-convergent Fibonacci difference sequence spaces |
title_full | Intuitionistic fuzzy I-convergent Fibonacci difference sequence spaces |
title_fullStr | Intuitionistic fuzzy I-convergent Fibonacci difference sequence spaces |
title_full_unstemmed | Intuitionistic fuzzy I-convergent Fibonacci difference sequence spaces |
title_short | Intuitionistic fuzzy I-convergent Fibonacci difference sequence spaces |
title_sort | intuitionistic fuzzy i convergent fibonacci difference sequence spaces |
topic | Difference sequence space Fibonacci numbers Fibonacci difference matrix Intuitionistic fuzzy normed space I-convergence |
url | http://link.springer.com/article/10.1186/s13660-019-2152-1 |
work_keys_str_mv | AT vakeelakhan intuitionisticfuzzyiconvergentfibonaccidifferencesequencespaces AT emrahekara intuitionisticfuzzyiconvergentfibonaccidifferencesequencespaces AT hennaaltaf intuitionisticfuzzyiconvergentfibonaccidifferencesequencespaces AT nazneenkhan intuitionisticfuzzyiconvergentfibonaccidifferencesequencespaces AT mobeenahmad intuitionisticfuzzyiconvergentfibonaccidifferencesequencespaces |