An online ensemble coupled data assimilation capability for the Community Earth System Model: system design and evaluation

<p>The Community Earth System Model (CESM) developed by the National Center for Atmospheric Research (NCAR) has been used worldwide for climate studies. This study extends the efforts of CESM development to include an online (i.e., in-core) ensemble coupled data assimilation system (CESM-ECDA)...

Full description

Bibliographic Details
Main Authors: J. Sun, Y. Jiang, S. Zhang, W. Zhang, L. Lu, G. Liu, Y. Chen, X. Xing, X. Lin, L. Wu
Format: Article
Language:English
Published: Copernicus Publications 2022-06-01
Series:Geoscientific Model Development
Online Access:https://gmd.copernicus.org/articles/15/4805/2022/gmd-15-4805-2022.pdf
Description
Summary:<p>The Community Earth System Model (CESM) developed by the National Center for Atmospheric Research (NCAR) has been used worldwide for climate studies. This study extends the efforts of CESM development to include an online (i.e., in-core) ensemble coupled data assimilation system (CESM-ECDA) to enhance CESM's capability for climate predictability studies and prediction applications. The CESM-ECDA system consists of an online atmospheric data assimilation (ADA) component implemented in both the finite-volume and spectral-element dynamical cores and an online ocean data assimilation (ODA) component. In ADA, surface pressures (<span class="inline-formula"><i>P</i><sub>s</sub></span>) are assimilated, while in ODA, gridded sea surface temperature (SST) and ocean temperature and salinity profiles at real Argo locations are assimilated. The system has been evaluated within a perfect twin experiment framework, showing significantly reduced errors of the model atmosphere and ocean states through “observation” constraints by ADA and ODA. The weakly coupled data assimilation (CDA) in which both the online ADA and ODA are conducted during the coupled model integration shows smaller errors of air–sea fluxes than the single ADA and ODA, facilitating the future utilization of cross-covariance between the atmosphere and ocean at the air–sea interface. A 3-year CDA reanalysis experiment is also implemented by assimilating <span class="inline-formula"><i>P</i><sub>s</sub></span>, SST and ocean temperature and salinity profiles from the real world spanning the period 1978 to 1980 using 12 ensemble members. The success of the online CESM-ECDA system is the first step to implementing a high-resolution long-term climate reanalysis once the algorithm efficiency is much improved.</p>
ISSN:1991-959X
1991-9603