Summary: | Abstract Ambient backscatter is a promising wireless communication technique where low-power users communicate with each other without any dedicated power source. These communicating users transmit their information by reflecting ambient radio-frequency (RF) signals. In this paper, we propose an ambient backscatter communications-assisted wireless-powered underlay cognitive radio network (CRN). The proposed CRN consists of a single primary transmitter (PT) and multiple primary receivers (PRs), secondary transmitters (STs), and secondary receivers (SRs). For efficient utilization of radio resources, the STs in the proposed scheme dynamically adopt either harvest-then-transmit mode or backscatter mode. Furthermore, PRs cooperate with STs to select an appropriate mode for their communication with SRs. To evaluate the performance of our proposed scheme, we conduct system-level simulations. Numerical results show that the performance of the secondary system can be improved in terms of throughput with minimum effect on the communication of primary users.
|