Hermitian Rank Metric Codes and Duality

In this paper we define and study rank metric codes endowed with a Hermitian form. We analyze the duality for <inline-formula> <tex-math notation="LaTeX">$\mathbb {F}_{q^{2}}$ </tex-math></inline-formula>-linear matrix codes in the ambient space <inline-formula&g...

Full description

Bibliographic Details
Main Authors: Javier De La Cruz, Jorge Robinson Evilla, Ferruh Ozbudak
Format: Article
Language:English
Published: IEEE 2021-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9371673/
_version_ 1811209795146874880
author Javier De La Cruz
Jorge Robinson Evilla
Ferruh Ozbudak
author_facet Javier De La Cruz
Jorge Robinson Evilla
Ferruh Ozbudak
author_sort Javier De La Cruz
collection DOAJ
description In this paper we define and study rank metric codes endowed with a Hermitian form. We analyze the duality for <inline-formula> <tex-math notation="LaTeX">$\mathbb {F}_{q^{2}}$ </tex-math></inline-formula>-linear matrix codes in the ambient space <inline-formula> <tex-math notation="LaTeX">$(\mathbb {F}_{q^{2}})_{n,m}$ </tex-math></inline-formula> and for both <inline-formula> <tex-math notation="LaTeX">$\mathbb {F}_{q^{2}}$ </tex-math></inline-formula>-additive codes and <inline-formula> <tex-math notation="LaTeX">$\mathbb {F}_{q^{2m}}$ </tex-math></inline-formula>-linear codes in the ambient space <inline-formula> <tex-math notation="LaTeX">$\mathbb {F}_{q^{2m}}^{n}$ </tex-math></inline-formula>. Similarly, as in the Euclidean case we establish a relationship between the duality of these families of codes. For this we introduce the concept of <inline-formula> <tex-math notation="LaTeX">$q^{m}$ </tex-math></inline-formula>-duality between bases of <inline-formula> <tex-math notation="LaTeX">$\mathbb {F}_{q^{2m}}$ </tex-math></inline-formula> over <inline-formula> <tex-math notation="LaTeX">$\mathbb {F}_{q^{2}}$ </tex-math></inline-formula> and prove that a <inline-formula> <tex-math notation="LaTeX">$q^{m}$ </tex-math></inline-formula>-self dual basis exists if and only if <inline-formula> <tex-math notation="LaTeX">$m$ </tex-math></inline-formula> is an odd integer. We obtain connections on the dual codes in <inline-formula> <tex-math notation="LaTeX">$\mathbb {F}_{q^{2m}}^{n}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$(\mathbb {F}_{q^{2}})_{n,m}$ </tex-math></inline-formula> with the corresponding inner products. In particular, we study Hermitian linear complementary dual, Hermitian self-dual and Hermitian self-orthogonal codes in <inline-formula> <tex-math notation="LaTeX">$\mathbb {F}_{q^{2m}}^{n}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$(\mathbb {F}_{q^{2}})_{n,m}$ </tex-math></inline-formula>. Furthermore, we present connections between Hermitian <inline-formula> <tex-math notation="LaTeX">$\mathbb {F}_{q^{2}}$ </tex-math></inline-formula>-additive codes and Euclidean <inline-formula> <tex-math notation="LaTeX">$\mathbb {F}_{q^{2}}$ </tex-math></inline-formula>-additive codes in <inline-formula> <tex-math notation="LaTeX">$\mathbb {F}_{q^{2m}}^{n}$ </tex-math></inline-formula>.
first_indexed 2024-04-12T04:44:56Z
format Article
id doaj.art-a654d99fbeb04460b98a11fb10056147
institution Directory Open Access Journal
issn 2169-3536
language English
last_indexed 2024-04-12T04:44:56Z
publishDate 2021-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj.art-a654d99fbeb04460b98a11fb100561472022-12-22T03:47:31ZengIEEEIEEE Access2169-35362021-01-019384793848710.1109/ACCESS.2021.30645039371673Hermitian Rank Metric Codes and DualityJavier De La Cruz0Jorge Robinson Evilla1Ferruh Ozbudak2https://orcid.org/0000-0002-1694-9283Departamento de Matem&#x00E1;ticas y Estad&#x00ED;stica, Universidad del Norte, Barranquilla, ColombiaDepartamento de Matem&#x00E1;ticas y Estad&#x00ED;stica, Universidad del Norte, Barranquilla, ColombiaDepartment of Mathematics, Institute of Applied Mathematics, Middle East Technical University, Ankara, TurkeyIn this paper we define and study rank metric codes endowed with a Hermitian form. We analyze the duality for <inline-formula> <tex-math notation="LaTeX">$\mathbb {F}_{q^{2}}$ </tex-math></inline-formula>-linear matrix codes in the ambient space <inline-formula> <tex-math notation="LaTeX">$(\mathbb {F}_{q^{2}})_{n,m}$ </tex-math></inline-formula> and for both <inline-formula> <tex-math notation="LaTeX">$\mathbb {F}_{q^{2}}$ </tex-math></inline-formula>-additive codes and <inline-formula> <tex-math notation="LaTeX">$\mathbb {F}_{q^{2m}}$ </tex-math></inline-formula>-linear codes in the ambient space <inline-formula> <tex-math notation="LaTeX">$\mathbb {F}_{q^{2m}}^{n}$ </tex-math></inline-formula>. Similarly, as in the Euclidean case we establish a relationship between the duality of these families of codes. For this we introduce the concept of <inline-formula> <tex-math notation="LaTeX">$q^{m}$ </tex-math></inline-formula>-duality between bases of <inline-formula> <tex-math notation="LaTeX">$\mathbb {F}_{q^{2m}}$ </tex-math></inline-formula> over <inline-formula> <tex-math notation="LaTeX">$\mathbb {F}_{q^{2}}$ </tex-math></inline-formula> and prove that a <inline-formula> <tex-math notation="LaTeX">$q^{m}$ </tex-math></inline-formula>-self dual basis exists if and only if <inline-formula> <tex-math notation="LaTeX">$m$ </tex-math></inline-formula> is an odd integer. We obtain connections on the dual codes in <inline-formula> <tex-math notation="LaTeX">$\mathbb {F}_{q^{2m}}^{n}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$(\mathbb {F}_{q^{2}})_{n,m}$ </tex-math></inline-formula> with the corresponding inner products. In particular, we study Hermitian linear complementary dual, Hermitian self-dual and Hermitian self-orthogonal codes in <inline-formula> <tex-math notation="LaTeX">$\mathbb {F}_{q^{2m}}^{n}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$(\mathbb {F}_{q^{2}})_{n,m}$ </tex-math></inline-formula>. Furthermore, we present connections between Hermitian <inline-formula> <tex-math notation="LaTeX">$\mathbb {F}_{q^{2}}$ </tex-math></inline-formula>-additive codes and Euclidean <inline-formula> <tex-math notation="LaTeX">$\mathbb {F}_{q^{2}}$ </tex-math></inline-formula>-additive codes in <inline-formula> <tex-math notation="LaTeX">$\mathbb {F}_{q^{2m}}^{n}$ </tex-math></inline-formula>.https://ieeexplore.ieee.org/document/9371673/Rank metric codesadditive rank metric codesHermitian rank metric codes
spellingShingle Javier De La Cruz
Jorge Robinson Evilla
Ferruh Ozbudak
Hermitian Rank Metric Codes and Duality
IEEE Access
Rank metric codes
additive rank metric codes
Hermitian rank metric codes
title Hermitian Rank Metric Codes and Duality
title_full Hermitian Rank Metric Codes and Duality
title_fullStr Hermitian Rank Metric Codes and Duality
title_full_unstemmed Hermitian Rank Metric Codes and Duality
title_short Hermitian Rank Metric Codes and Duality
title_sort hermitian rank metric codes and duality
topic Rank metric codes
additive rank metric codes
Hermitian rank metric codes
url https://ieeexplore.ieee.org/document/9371673/
work_keys_str_mv AT javierdelacruz hermitianrankmetriccodesandduality
AT jorgerobinsonevilla hermitianrankmetriccodesandduality
AT ferruhozbudak hermitianrankmetriccodesandduality