OBSERVATIONS OF CONTINUOUS INSTABILITY FOR SCAR INLET ICE SHELF, ANTARCTIC PENINSULA
Observation of the evolving instability of ice shelves plays a very important role in global change research. Following the suddenly large-scale collapse of the Larsen B Ice Shelf in the Antarctic Peninsula in 2002, the evolving instability for its remnant, the Scar Inlet Ice Shelf, began to be incr...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2021-06-01
|
Series: | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
Online Access: | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2021/485/2021/isprs-archives-XLIII-B3-2021-485-2021.pdf |
Summary: | Observation of the evolving instability of ice shelves plays a very important role in global change research. Following the suddenly large-scale collapse of the Larsen B Ice Shelf in the Antarctic Peninsula in 2002, the evolving instability for its remnant, the Scar Inlet Ice Shelf, began to be increasingly studied to provide a deeper understanding of the disintegration of the Larsen B Ice Shelf in 2002 and also provide a chance for studying the response of ice shelves to the large-scale collapse events. In this study, based on sequential Landsat images spanning 2005–2020, we produced detailed maps of the ice velocity fields for the Scar Inlet Ice Shelf. The results indicate that the ice velocities for the Scar Inlet Ice Shelf region have substantially increased since 2005, the maximum ice velocity reached more than 900 m/y in the ice shelf front. Surface rifts have also substantially increased in both length and width and are moving seawards. The ice front position of the Scar Inlet Ice Shelf is relatively stable in 2008–2010 and then steadily advancing after 2010. The acceleration of ice velocities, the dynamic change of the ice front, the increase of major surface rifts and the newly added rifts in the central part of the ice shelf, and the heavily enhanced surface crevasses are all revealing the evolving instability of the Scar Inlet Ice Shelf. |
---|---|
ISSN: | 1682-1750 2194-9034 |