Infinitely many solutions for class of Navier boundary (p,q)-biharmonic systems
This article shows the existence and multiplicity of weak solutions for the (p,q)-biharmonic type system $$displaylines{ Delta(|Delta u|^{p-2}Delta u)=lambda F_u(x,u,v)quadhbox{in }Omega,cr Delta(|Delta v|^{q-2}Delta v)=lambda F_v(x,u,v)quadhbox{in }Omega,cr u=v=Delta u=Delta v=0quad hbox{on }p...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2012-09-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2012/163/abstr.html |
Summary: | This article shows the existence and multiplicity of weak solutions for the (p,q)-biharmonic type system $$displaylines{ Delta(|Delta u|^{p-2}Delta u)=lambda F_u(x,u,v)quadhbox{in }Omega,cr Delta(|Delta v|^{q-2}Delta v)=lambda F_v(x,u,v)quadhbox{in }Omega,cr u=v=Delta u=Delta v=0quad hbox{on }partialOmega. }$$ Under certain conditions on F, we show the existence of infinitely many weak solutions. Our technical approach is based on Bonanno and Molica Bisci's general critical point theorem. |
---|---|
ISSN: | 1072-6691 |