Big data analytic untuk pembuatan rekomendasi koleksi film personal menggunakan Mlib. Apache Spark

Introduction. The digital age is characterized by the explosion of digital information that creates problems in information retrieval. Search engines have a weakness in the keywords/queries that users can remember. Recommendations arise as solutions to provide personal information. Data Collection...

Full description

Bibliographic Details
Main Author: Indah Survyana Wahyudi
Format: Article
Language:English
Published: Universitas Gadjah Mada 2018-06-01
Series:Berkala Ilmu Perpustakaan dan Informasi
Subjects:
Online Access:https://jurnal.ugm.ac.id/bip/article/view/32208
_version_ 1818265978536984576
author Indah Survyana Wahyudi
author_facet Indah Survyana Wahyudi
author_sort Indah Survyana Wahyudi
collection DOAJ
description Introduction. The digital age is characterized by the explosion of digital information that creates problems in information retrieval. Search engines have a weakness in the keywords/queries that users can remember. Recommendations arise as solutions to provide personal information. Data Collection Method. In this paper, the researcher presented a recommendation engine model using dataset from movielends.org. Analysis Data. Alternating Least Square-Weight Regulation (ALS-WR) was used as a big data analytic algorithm in rating prediction and Cosine Similiarity as the second filter to bring items closer to the genre. Results and Discussions.The results of  Root Mean Squared Error (RMSE) from 100K datasets were 0.96 (validation) and 0.94 (test). The results RMSE from 1M dataset were 0.86 (validation) and 0.96 (test). The results  RMSE from 10M dataset were 0.81 (validation) and 0.81 (test). The result cosine similarity was 1 for 100% resemblance and it  decreased based on the similarity level. The user acceptance test was 28% user accepts the result of first recommendation, this value increased to 62% acceptance level of the user against the second recommendation. Conclusions. The final results show that 75% of respondents prefer the second recommendation  from two-stage filtering than just collaborative filtering.
first_indexed 2024-12-12T19:59:24Z
format Article
id doaj.art-a67d6b45c82e4a6dadec01a054b3e382
institution Directory Open Access Journal
issn 1693-7740
2477-0361
language English
last_indexed 2024-12-12T19:59:24Z
publishDate 2018-06-01
publisher Universitas Gadjah Mada
record_format Article
series Berkala Ilmu Perpustakaan dan Informasi
spelling doaj.art-a67d6b45c82e4a6dadec01a054b3e3822022-12-22T00:13:47ZengUniversitas Gadjah MadaBerkala Ilmu Perpustakaan dan Informasi1693-77402477-03612018-06-01141112510.22146/bip.3220821083Big data analytic untuk pembuatan rekomendasi koleksi film personal menggunakan Mlib. Apache SparkIndah Survyana Wahyudi0Sekolah Tinggi Energi dan Mineral-AkamigasIntroduction. The digital age is characterized by the explosion of digital information that creates problems in information retrieval. Search engines have a weakness in the keywords/queries that users can remember. Recommendations arise as solutions to provide personal information. Data Collection Method. In this paper, the researcher presented a recommendation engine model using dataset from movielends.org. Analysis Data. Alternating Least Square-Weight Regulation (ALS-WR) was used as a big data analytic algorithm in rating prediction and Cosine Similiarity as the second filter to bring items closer to the genre. Results and Discussions.The results of  Root Mean Squared Error (RMSE) from 100K datasets were 0.96 (validation) and 0.94 (test). The results RMSE from 1M dataset were 0.86 (validation) and 0.96 (test). The results  RMSE from 10M dataset were 0.81 (validation) and 0.81 (test). The result cosine similarity was 1 for 100% resemblance and it  decreased based on the similarity level. The user acceptance test was 28% user accepts the result of first recommendation, this value increased to 62% acceptance level of the user against the second recommendation. Conclusions. The final results show that 75% of respondents prefer the second recommendation  from two-stage filtering than just collaborative filtering.https://jurnal.ugm.ac.id/bip/article/view/32208Recommendation EngineBig Data AnalyticALS-WRCosine SimilarityData Mining
spellingShingle Indah Survyana Wahyudi
Big data analytic untuk pembuatan rekomendasi koleksi film personal menggunakan Mlib. Apache Spark
Berkala Ilmu Perpustakaan dan Informasi
Recommendation Engine
Big Data Analytic
ALS-WR
Cosine Similarity
Data Mining
title Big data analytic untuk pembuatan rekomendasi koleksi film personal menggunakan Mlib. Apache Spark
title_full Big data analytic untuk pembuatan rekomendasi koleksi film personal menggunakan Mlib. Apache Spark
title_fullStr Big data analytic untuk pembuatan rekomendasi koleksi film personal menggunakan Mlib. Apache Spark
title_full_unstemmed Big data analytic untuk pembuatan rekomendasi koleksi film personal menggunakan Mlib. Apache Spark
title_short Big data analytic untuk pembuatan rekomendasi koleksi film personal menggunakan Mlib. Apache Spark
title_sort big data analytic untuk pembuatan rekomendasi koleksi film personal menggunakan mlib apache spark
topic Recommendation Engine
Big Data Analytic
ALS-WR
Cosine Similarity
Data Mining
url https://jurnal.ugm.ac.id/bip/article/view/32208
work_keys_str_mv AT indahsurvyanawahyudi bigdataanalyticuntukpembuatanrekomendasikoleksifilmpersonalmenggunakanmlibapachespark