Summary: | Silk sericin (SS) produced by <i>Bombyx mori</i> is normally discarded as waste in manufacturing processes, which causes environmental pollution. Therefore, investigating the use of silk sericin has economic and environmental benefits. As a three-dimensional structure, the sericin-derived hydrogel was explored in different applications. However, many developed gelation procedures raise concerns regarding safety, cost, and duration of gelation time. In this work, “thiol-ene” click chemistry was used to quickly and controllably prepare an SS-derived hydrogel to resolve these early concerns. Then, berberine was loaded and used as a model for investigating the drug-release profiles of the prepared hydrogel. The experimental results revealed that this hydrogel is eligible for a long-term release of berberine. Throughout the antibacterial experiments, the released berberine maintained its antibacterial activity. Our work expands the application of SS in biomedical industries in an eco-friendly way. Furthermore, the discussed strategy could provide a reference for the subsequent development of SS-derived materials.
|