ProteinCT: An implementation of the protein circuit topology framework

The ability to describe the topology of a folded protein conformation is critically important for functional analysis, protein engineering, and drug design. Circuit topology is a unique topological framework which is widely applicable to protein analysis, yet a state-of-the art implementation of thi...

Full description

Bibliographic Details
Main Authors: Duane Moes, Elnaz Banijamali, Vahid Sheikhhassani, Barbara Scalvini, Jaie Woodard, Alireza Mashaghi
Format: Article
Language:English
Published: Elsevier 2022-01-01
Series:MethodsX
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2215016122002400
Description
Summary:The ability to describe the topology of a folded protein conformation is critically important for functional analysis, protein engineering, and drug design. Circuit topology is a unique topological framework which is widely applicable to protein analysis, yet a state-of-the art implementation of this concept is lacking. Here, we present an open-source Python-implemented circuit topology tool called ProteinCT. The platform provides a method for acquiring, visualizing, analyzing, and quantifying circuit topology data from proteins of interest. We mapped the universe of human proteins to a circuit topology space using conventional hardware within a few hours, demonstrating the performance of ProteinCT. In brief, • A Python-implemented circuit topology tool is developed to extract global and local topological information from a protein structure file. • Modules are developed to combine topological information with geometric and energetic information. • It is demonstrated that the method can be efficiently applied to a large set of proteins, opening a wide range of possibilities for structural proteomics research.
ISSN:2215-0161