Dirichlet problem for degenerate elliptic complex Monge-Ampere equation

We consider the Dirichlet problem $$ det ig({frac{partial^2u}{partial z_ipartial overline{z_j}}} ig)=g(z,u)quadmbox{in }Omega,, quad uig|_{ partial Omega }=varphi,, $$ where $Omega$ is a bounded open set of $mathbb{C}^{n}$ with regular boundary, $g$ and $varphi$ are sufficiently smooth functions, an...

Full description

Bibliographic Details
Main Author: Saoussen Kallel-Jallouli
Format: Article
Language:English
Published: Texas State University 2004-04-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2004/48/abstr.html
_version_ 1811245664502284288
author Saoussen Kallel-Jallouli
author_facet Saoussen Kallel-Jallouli
author_sort Saoussen Kallel-Jallouli
collection DOAJ
description We consider the Dirichlet problem $$ det ig({frac{partial^2u}{partial z_ipartial overline{z_j}}} ig)=g(z,u)quadmbox{in }Omega,, quad uig|_{ partial Omega }=varphi,, $$ where $Omega$ is a bounded open set of $mathbb{C}^{n}$ with regular boundary, $g$ and $varphi$ are sufficiently smooth functions, and $g$ is non-negative. We prove that, under additional hypotheses on $g$ and $varphi $, if $|det varphi _{ioverline{j}}-g|_{C^{s_{ast}}}$ is sufficiently small the problem has a plurisubharmonic solution.
first_indexed 2024-04-12T14:42:45Z
format Article
id doaj.art-a6a7882fee8f4569a8d9617429fff141
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-04-12T14:42:45Z
publishDate 2004-04-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-a6a7882fee8f4569a8d9617429fff1412022-12-22T03:28:46ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912004-04-01200448124Dirichlet problem for degenerate elliptic complex Monge-Ampere equationSaoussen Kallel-JallouliWe consider the Dirichlet problem $$ det ig({frac{partial^2u}{partial z_ipartial overline{z_j}}} ig)=g(z,u)quadmbox{in }Omega,, quad uig|_{ partial Omega }=varphi,, $$ where $Omega$ is a bounded open set of $mathbb{C}^{n}$ with regular boundary, $g$ and $varphi$ are sufficiently smooth functions, and $g$ is non-negative. We prove that, under additional hypotheses on $g$ and $varphi $, if $|det varphi _{ioverline{j}}-g|_{C^{s_{ast}}}$ is sufficiently small the problem has a plurisubharmonic solution.http://ejde.math.txstate.edu/Volumes/2004/48/abstr.htmlDegenerate ellipticomplex Monge-AmperePlurisubharmonic function.
spellingShingle Saoussen Kallel-Jallouli
Dirichlet problem for degenerate elliptic complex Monge-Ampere equation
Electronic Journal of Differential Equations
Degenerate elliptic
omplex Monge-Ampere
Plurisubharmonic function.
title Dirichlet problem for degenerate elliptic complex Monge-Ampere equation
title_full Dirichlet problem for degenerate elliptic complex Monge-Ampere equation
title_fullStr Dirichlet problem for degenerate elliptic complex Monge-Ampere equation
title_full_unstemmed Dirichlet problem for degenerate elliptic complex Monge-Ampere equation
title_short Dirichlet problem for degenerate elliptic complex Monge-Ampere equation
title_sort dirichlet problem for degenerate elliptic complex monge ampere equation
topic Degenerate elliptic
omplex Monge-Ampere
Plurisubharmonic function.
url http://ejde.math.txstate.edu/Volumes/2004/48/abstr.html
work_keys_str_mv AT saoussenkalleljallouli dirichletproblemfordegenerateellipticcomplexmongeampereequation