Deep Recurrent Neural Networks for Automatic Detection of Sleep Apnea from Single Channel Respiration Signals
Sleep apnea is a common sleep disorder that causes repeated breathing interruption during sleep. The performance of automated apnea detection methods based on respiratory signals depend on the signals considered and feature extraction methods. Moreover, feature engineering techniques are highly depe...
Hlavní autoři: | Hisham ElMoaqet, Mohammad Eid, Martin Glos, Mutaz Ryalat, Thomas Penzel |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
MDPI AG
2020-09-01
|
Edice: | Sensors |
Témata: | |
On-line přístup: | https://www.mdpi.com/1424-8220/20/18/5037 |
Podobné jednotky
-
A Deep Transfer Learning Framework for Sleep Stage Classification with Single-Channel EEG Signals
Autor: Hisham ElMoaqet, a další
Vydáno: (2022-11-01) -
Gaussian Mixture Models for Detecting Sleep Apnea Events Using Single Oronasal Airflow Record
Autor: Hisham ElMoaqet, a další
Vydáno: (2020-11-01) -
Obstructive sleep apnea-hypopnea syndrome: Etiology and diagnosis
Autor: Abdul Ghani Sankri-Tarbichi
Vydáno: (2012-01-01) -
Introduction to Obstructive Sleep Apnea for the Internist
Autor: Rosemary Adamson, a další
Vydáno: (2018-10-01) -
Alternatives to Polysomnography for the Diagnosis of Pediatric Obstructive Sleep Apnea
Autor: Taylor B. Teplitzky, a další
Vydáno: (2023-06-01)