Deep Recurrent Neural Networks for Automatic Detection of Sleep Apnea from Single Channel Respiration Signals
Sleep apnea is a common sleep disorder that causes repeated breathing interruption during sleep. The performance of automated apnea detection methods based on respiratory signals depend on the signals considered and feature extraction methods. Moreover, feature engineering techniques are highly depe...
Autores principales: | Hisham ElMoaqet, Mohammad Eid, Martin Glos, Mutaz Ryalat, Thomas Penzel |
---|---|
Formato: | Artículo |
Lenguaje: | English |
Publicado: |
MDPI AG
2020-09-01
|
Colección: | Sensors |
Materias: | |
Acceso en línea: | https://www.mdpi.com/1424-8220/20/18/5037 |
Ejemplares similares
-
A Deep Transfer Learning Framework for Sleep Stage Classification with Single-Channel EEG Signals
por: Hisham ElMoaqet, et al.
Publicado: (2022-11-01) -
Gaussian Mixture Models for Detecting Sleep Apnea Events Using Single Oronasal Airflow Record
por: Hisham ElMoaqet, et al.
Publicado: (2020-11-01) -
Obstructive sleep apnea-hypopnea syndrome: Etiology and diagnosis
por: Abdul Ghani Sankri-Tarbichi
Publicado: (2012-01-01) -
Introduction to Obstructive Sleep Apnea for the Internist
por: Rosemary Adamson, et al.
Publicado: (2018-10-01) -
Alternatives to Polysomnography for the Diagnosis of Pediatric Obstructive Sleep Apnea
por: Taylor B. Teplitzky, et al.
Publicado: (2023-06-01)