The Application of Nanoscale Zero-Valent Iron Promotes Soil Remediation While Negatively Affecting Soil Microbial Biomass and Activity
The use of nanoscale zero-valent iron (nZVI) particles for soil remediation is gaining increased attention. However, there are concerns about the potential adverse effects of nZVI on soil microbial communities and, hence, soil quality. The objective of this study was to assess the impact of the appl...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2019-02-01
|
Series: | Frontiers in Environmental Science |
Subjects: | |
Online Access: | https://www.frontiersin.org/article/10.3389/fenvs.2019.00019/full |
_version_ | 1818943479735123968 |
---|---|
author | Mikel Anza Oihane Salazar Lur Epelde Itziar Alkorta Carlos Garbisu |
author_facet | Mikel Anza Oihane Salazar Lur Epelde Itziar Alkorta Carlos Garbisu |
author_sort | Mikel Anza |
collection | DOAJ |
description | The use of nanoscale zero-valent iron (nZVI) particles for soil remediation is gaining increased attention. However, there are concerns about the potential adverse effects of nZVI on soil microbial communities and, hence, soil quality. The objective of this study was to assess the impact of the application of nZVI on soil microbial parameters (as bioindicators of soil quality) during the nanoremediation of soil artificially contaminated with lindane (10 mg γ-HCH kg−1 DW soil) and zinc (1,500 mg Zn kg−1 DW soil). nZVI particles were also applied to non-contaminated soil. The following nZVI doses were applied twice: 0, 0.25, 0.5, 1, and 2 mg nZVI g−1 DW soil. Nine weeks after nZVI application, the following parameters were determined in soil samples: lindane concentration, extractable Zn concentration, microbial biomass carbon (CMB), bacterial and fungal abundance (gene copy numbers by qPCR), enzyme activities (β-glucosidase, β-glucosaminidase, xylosidase, acid phosphatase, arylsulphatase, and Leu-aminopeptidase) and bacterial richness by ARISA profiles. The application of nZVI reduced lindane and extractable Zn concentrations following a dose-dependent pattern. The presence of contaminants reduced soil microbial biomass and activity. The application of nZVI negatively affected the microbial quality of the contaminated soil but not of the non-contaminated soil. This observation might reflect a “stress-on-stress” effect, i.e., the already stressed microbial populations present in the contaminated soil were more sensitive to the application of nZVI (a second stress) than those present in the non-contaminated soil. |
first_indexed | 2024-12-20T07:27:59Z |
format | Article |
id | doaj.art-a6b0c1ea5f8c4a74a16c33967a92de77 |
institution | Directory Open Access Journal |
issn | 2296-665X |
language | English |
last_indexed | 2024-12-20T07:27:59Z |
publishDate | 2019-02-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Environmental Science |
spelling | doaj.art-a6b0c1ea5f8c4a74a16c33967a92de772022-12-21T19:48:29ZengFrontiers Media S.A.Frontiers in Environmental Science2296-665X2019-02-01710.3389/fenvs.2019.00019435715The Application of Nanoscale Zero-Valent Iron Promotes Soil Remediation While Negatively Affecting Soil Microbial Biomass and ActivityMikel Anza0Oihane Salazar1Lur Epelde2Itziar Alkorta3Carlos Garbisu4Soil Microbial Ecology Group, NEIKER-Tecnalia, Department of Conservation of Natural Resources, Derio, SpainSoil Microbial Ecology Group, NEIKER-Tecnalia, Department of Conservation of Natural Resources, Derio, SpainSoil Microbial Ecology Group, NEIKER-Tecnalia, Department of Conservation of Natural Resources, Derio, SpainDepartment of Biochemistry and Molecular Biology, Instituto BIOFISIKA (CSIC, UPV/EHU), University of the Basque Country, Bilbao, SpainSoil Microbial Ecology Group, NEIKER-Tecnalia, Department of Conservation of Natural Resources, Derio, SpainThe use of nanoscale zero-valent iron (nZVI) particles for soil remediation is gaining increased attention. However, there are concerns about the potential adverse effects of nZVI on soil microbial communities and, hence, soil quality. The objective of this study was to assess the impact of the application of nZVI on soil microbial parameters (as bioindicators of soil quality) during the nanoremediation of soil artificially contaminated with lindane (10 mg γ-HCH kg−1 DW soil) and zinc (1,500 mg Zn kg−1 DW soil). nZVI particles were also applied to non-contaminated soil. The following nZVI doses were applied twice: 0, 0.25, 0.5, 1, and 2 mg nZVI g−1 DW soil. Nine weeks after nZVI application, the following parameters were determined in soil samples: lindane concentration, extractable Zn concentration, microbial biomass carbon (CMB), bacterial and fungal abundance (gene copy numbers by qPCR), enzyme activities (β-glucosidase, β-glucosaminidase, xylosidase, acid phosphatase, arylsulphatase, and Leu-aminopeptidase) and bacterial richness by ARISA profiles. The application of nZVI reduced lindane and extractable Zn concentrations following a dose-dependent pattern. The presence of contaminants reduced soil microbial biomass and activity. The application of nZVI negatively affected the microbial quality of the contaminated soil but not of the non-contaminated soil. This observation might reflect a “stress-on-stress” effect, i.e., the already stressed microbial populations present in the contaminated soil were more sensitive to the application of nZVI (a second stress) than those present in the non-contaminated soil.https://www.frontiersin.org/article/10.3389/fenvs.2019.00019/fullbioindicatorsnanoremediationpollutionsoil healthsoil microorganisms |
spellingShingle | Mikel Anza Oihane Salazar Lur Epelde Itziar Alkorta Carlos Garbisu The Application of Nanoscale Zero-Valent Iron Promotes Soil Remediation While Negatively Affecting Soil Microbial Biomass and Activity Frontiers in Environmental Science bioindicators nanoremediation pollution soil health soil microorganisms |
title | The Application of Nanoscale Zero-Valent Iron Promotes Soil Remediation While Negatively Affecting Soil Microbial Biomass and Activity |
title_full | The Application of Nanoscale Zero-Valent Iron Promotes Soil Remediation While Negatively Affecting Soil Microbial Biomass and Activity |
title_fullStr | The Application of Nanoscale Zero-Valent Iron Promotes Soil Remediation While Negatively Affecting Soil Microbial Biomass and Activity |
title_full_unstemmed | The Application of Nanoscale Zero-Valent Iron Promotes Soil Remediation While Negatively Affecting Soil Microbial Biomass and Activity |
title_short | The Application of Nanoscale Zero-Valent Iron Promotes Soil Remediation While Negatively Affecting Soil Microbial Biomass and Activity |
title_sort | application of nanoscale zero valent iron promotes soil remediation while negatively affecting soil microbial biomass and activity |
topic | bioindicators nanoremediation pollution soil health soil microorganisms |
url | https://www.frontiersin.org/article/10.3389/fenvs.2019.00019/full |
work_keys_str_mv | AT mikelanza theapplicationofnanoscalezerovalentironpromotessoilremediationwhilenegativelyaffectingsoilmicrobialbiomassandactivity AT oihanesalazar theapplicationofnanoscalezerovalentironpromotessoilremediationwhilenegativelyaffectingsoilmicrobialbiomassandactivity AT lurepelde theapplicationofnanoscalezerovalentironpromotessoilremediationwhilenegativelyaffectingsoilmicrobialbiomassandactivity AT itziaralkorta theapplicationofnanoscalezerovalentironpromotessoilremediationwhilenegativelyaffectingsoilmicrobialbiomassandactivity AT carlosgarbisu theapplicationofnanoscalezerovalentironpromotessoilremediationwhilenegativelyaffectingsoilmicrobialbiomassandactivity AT mikelanza applicationofnanoscalezerovalentironpromotessoilremediationwhilenegativelyaffectingsoilmicrobialbiomassandactivity AT oihanesalazar applicationofnanoscalezerovalentironpromotessoilremediationwhilenegativelyaffectingsoilmicrobialbiomassandactivity AT lurepelde applicationofnanoscalezerovalentironpromotessoilremediationwhilenegativelyaffectingsoilmicrobialbiomassandactivity AT itziaralkorta applicationofnanoscalezerovalentironpromotessoilremediationwhilenegativelyaffectingsoilmicrobialbiomassandactivity AT carlosgarbisu applicationofnanoscalezerovalentironpromotessoilremediationwhilenegativelyaffectingsoilmicrobialbiomassandactivity |