A Numerical Method for a Heat Conduction Model in a Double-Pane Window

In this article, we propose a one-dimensional heat conduction model for a double-pane window with a temperature-jump boundary condition and a thermal lagging interfacial effect condition between layers. We construct a second-order accurate finite difference scheme to solve the heat conduction proble...

Full description

Bibliographic Details
Main Authors: Aníbal Coronel, Fernando Huancas, Esperanza Lozada, Alex Tello
Format: Article
Language:English
Published: MDPI AG 2022-08-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/11/8/422
_version_ 1797439491099590656
author Aníbal Coronel
Fernando Huancas
Esperanza Lozada
Alex Tello
author_facet Aníbal Coronel
Fernando Huancas
Esperanza Lozada
Alex Tello
author_sort Aníbal Coronel
collection DOAJ
description In this article, we propose a one-dimensional heat conduction model for a double-pane window with a temperature-jump boundary condition and a thermal lagging interfacial effect condition between layers. We construct a second-order accurate finite difference scheme to solve the heat conduction problem. The designed scheme is mainly based on approximations satisfying the facts that all inner grid points has second-order temporal and spatial truncation errors, while at the boundary points and at inter-facial points has second-order temporal truncation error and first-order spatial truncation error, respectively. We prove that the finite difference scheme introduced is unconditionally stable, convergent, and has a rate of convergence two in space and time for the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>L</mi><mo>∞</mo></msub></semantics></math></inline-formula>-norm. Moreover, we give a numerical example to confirm our theoretical results.
first_indexed 2024-03-09T11:54:01Z
format Article
id doaj.art-a6bf40ebe1854e50a5c66ebbff148f59
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-09T11:54:01Z
publishDate 2022-08-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-a6bf40ebe1854e50a5c66ebbff148f592023-11-30T23:11:33ZengMDPI AGAxioms2075-16802022-08-0111842210.3390/axioms11080422A Numerical Method for a Heat Conduction Model in a Double-Pane WindowAníbal Coronel0Fernando Huancas1Esperanza Lozada2Alex Tello3Departamento de Ciencias Básicas—Centro de Ciencias Exactas CCE-UBB, Facultad de Ciencias, Universidad del Bío-Bío, Campus Fernando May, Chillán 3780000, ChileDepartamento de Matemática, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa-Santiago 7750000, ChileDepartamento de Ciencias Básicas—Centro de Ciencias Exactas CCE-UBB, Facultad de Ciencias, Universidad del Bío-Bío, Campus Fernando May, Chillán 3780000, ChileDepartamento de Ciencias Básicas—Centro de Ciencias Exactas CCE-UBB, Facultad de Ciencias, Universidad del Bío-Bío, Campus Fernando May, Chillán 3780000, ChileIn this article, we propose a one-dimensional heat conduction model for a double-pane window with a temperature-jump boundary condition and a thermal lagging interfacial effect condition between layers. We construct a second-order accurate finite difference scheme to solve the heat conduction problem. The designed scheme is mainly based on approximations satisfying the facts that all inner grid points has second-order temporal and spatial truncation errors, while at the boundary points and at inter-facial points has second-order temporal truncation error and first-order spatial truncation error, respectively. We prove that the finite difference scheme introduced is unconditionally stable, convergent, and has a rate of convergence two in space and time for the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>L</mi><mo>∞</mo></msub></semantics></math></inline-formula>-norm. Moreover, we give a numerical example to confirm our theoretical results.https://www.mdpi.com/2075-1680/11/8/422heat conductiondouble-panefinite difference methodunconditional numerical method
spellingShingle Aníbal Coronel
Fernando Huancas
Esperanza Lozada
Alex Tello
A Numerical Method for a Heat Conduction Model in a Double-Pane Window
Axioms
heat conduction
double-pane
finite difference method
unconditional numerical method
title A Numerical Method for a Heat Conduction Model in a Double-Pane Window
title_full A Numerical Method for a Heat Conduction Model in a Double-Pane Window
title_fullStr A Numerical Method for a Heat Conduction Model in a Double-Pane Window
title_full_unstemmed A Numerical Method for a Heat Conduction Model in a Double-Pane Window
title_short A Numerical Method for a Heat Conduction Model in a Double-Pane Window
title_sort numerical method for a heat conduction model in a double pane window
topic heat conduction
double-pane
finite difference method
unconditional numerical method
url https://www.mdpi.com/2075-1680/11/8/422
work_keys_str_mv AT anibalcoronel anumericalmethodforaheatconductionmodelinadoublepanewindow
AT fernandohuancas anumericalmethodforaheatconductionmodelinadoublepanewindow
AT esperanzalozada anumericalmethodforaheatconductionmodelinadoublepanewindow
AT alextello anumericalmethodforaheatconductionmodelinadoublepanewindow
AT anibalcoronel numericalmethodforaheatconductionmodelinadoublepanewindow
AT fernandohuancas numericalmethodforaheatconductionmodelinadoublepanewindow
AT esperanzalozada numericalmethodforaheatconductionmodelinadoublepanewindow
AT alextello numericalmethodforaheatconductionmodelinadoublepanewindow