Growth-uncoupled propanediol production in a Thermoanaerobacterium thermosaccharolyticum strain engineered for high ethanol yield

Abstract Cocultures of engineered thermophilic bacteria can ferment lignocellulose without costly pretreatment or added enzymes, an ability that can be exploited for low cost biofuel production from renewable feedstocks. The hemicellulose-fermenting species Thermoanaerobacterium thermosaccharolyticu...

Full description

Bibliographic Details
Main Authors: Christopher D. Herring, Maulana Permana Ajie, Lee R. Lynd
Format: Article
Language:English
Published: Nature Portfolio 2023-02-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-023-29220-9
Description
Summary:Abstract Cocultures of engineered thermophilic bacteria can ferment lignocellulose without costly pretreatment or added enzymes, an ability that can be exploited for low cost biofuel production from renewable feedstocks. The hemicellulose-fermenting species Thermoanaerobacterium thermosaccharolyticum was engineered for high ethanol yield, but we found that the strains switched from growth-coupled production of ethanol to growth uncoupled production of acetate and 1,2-propanediol upon growth cessation, producing up to 6.7 g/L 1,2-propanediol from 60 g/L cellobiose. The unique capability of this species to make 1,2-propanediol from sugars was described decades ago, but the genes responsible were not identified. Here we deleted genes encoding methylglyoxal reductase, methylglyoxal synthase and glycerol dehydrogenase. Deletion of the latter two genes eliminated propanediol production. To understand how carbon flux is redirected in this species, we hypothesized that high ATP levels during growth cessation downregulate the activity of alcohol and aldehyde dehydrogenase activities. Measurements with cell free extracts show approximately twofold and tenfold inhibition of these activities by 10 mM ATP, supporting the hypothesized mechanism of metabolic redirection. This result may have implications for efforts to direct and maximize flux through alcohol dehydrogenase in other species.
ISSN:2045-2322