Quantum spin models for measurement-based quantum computation
Measurement-based quantum computation is different from other approaches for quantum computation, in that everything needs to be done is only local measurement on a certain entangled state. It thus uses entanglement as the resource that drives computation. We give a pedagogical treatment on the basi...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor & Francis Group
2018-01-01
|
Series: | Advances in Physics: X |
Subjects: | |
Online Access: | http://dx.doi.org/10.1080/23746149.2018.1461026 |
Summary: | Measurement-based quantum computation is different from other approaches for quantum computation, in that everything needs to be done is only local measurement on a certain entangled state. It thus uses entanglement as the resource that drives computation. We give a pedagogical treatment on the basics, and then review some selected developments beyond graph states, including Affleck–Kennedy–Lieb–Tasaki states and more recent 2D symmetry-protected topological states. We point out some open questions along the way. |
---|---|
ISSN: | 2374-6149 |