Upper semi-continuity of pullback attractors for bipolar fluids with delay
We investigate bipolar fluids with delay in a $ 2D $ channel $ \Sigma = \mathbb{R}\times (-K, K) $ for some $ K > 0 $. The channel $ \Sigma $ is divided into a sequence of simply connected, bounded, and smooth sub-domains $ \Sigma_n (n = 1, 2, 3\cdot\cdot\cdot) $, such that $ \Sigma_n\rightar...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2023-09-01
|
Series: | Electronic Research Archive |
Subjects: | |
Online Access: | https://www.aimspress.com/article/doi/10.3934/era.2023305?viewType=HTML |
_version_ | 1827762092141182976 |
---|---|
author | Guowei Liu Hao Xu Caidi Zhao |
author_facet | Guowei Liu Hao Xu Caidi Zhao |
author_sort | Guowei Liu |
collection | DOAJ |
description | We investigate bipolar fluids with delay in a $ 2D $ channel $ \Sigma = \mathbb{R}\times (-K, K) $ for some $ K > 0 $. The channel $ \Sigma $ is divided into a sequence of simply connected, bounded, and smooth sub-domains $ \Sigma_n (n = 1, 2, 3\cdot\cdot\cdot) $, such that $ \Sigma_n\rightarrow \Sigma $ as $ n\rightarrow \infty $. The paper demonstrates that the pullback attractors in the sub-domains $ \Sigma_n $ converge to the pullback attractor in the entire domain $ \Sigma $ as $ n\rightarrow \infty. $ |
first_indexed | 2024-03-11T10:24:53Z |
format | Article |
id | doaj.art-a6d09c9196594306a6a44a256476f91e |
institution | Directory Open Access Journal |
issn | 2688-1594 |
language | English |
last_indexed | 2024-03-11T10:24:53Z |
publishDate | 2023-09-01 |
publisher | AIMS Press |
record_format | Article |
series | Electronic Research Archive |
spelling | doaj.art-a6d09c9196594306a6a44a256476f91e2023-11-16T01:25:56ZengAIMS PressElectronic Research Archive2688-15942023-09-0131105996601110.3934/era.2023305Upper semi-continuity of pullback attractors for bipolar fluids with delayGuowei Liu0Hao Xu1Caidi Zhao21. School of Mathematical Sciences, Chongqing Normal University, Chongqing 400047, China1. School of Mathematical Sciences, Chongqing Normal University, Chongqing 400047, China2. Department of Mathematics, Wenzhou University, Wenzhou 325035, ChinaWe investigate bipolar fluids with delay in a $ 2D $ channel $ \Sigma = \mathbb{R}\times (-K, K) $ for some $ K > 0 $. The channel $ \Sigma $ is divided into a sequence of simply connected, bounded, and smooth sub-domains $ \Sigma_n (n = 1, 2, 3\cdot\cdot\cdot) $, such that $ \Sigma_n\rightarrow \Sigma $ as $ n\rightarrow \infty $. The paper demonstrates that the pullback attractors in the sub-domains $ \Sigma_n $ converge to the pullback attractor in the entire domain $ \Sigma $ as $ n\rightarrow \infty. $https://www.aimspress.com/article/doi/10.3934/era.2023305?viewType=HTMLbipolar fluiddelaypullback attractorupper semi-continuity |
spellingShingle | Guowei Liu Hao Xu Caidi Zhao Upper semi-continuity of pullback attractors for bipolar fluids with delay Electronic Research Archive bipolar fluid delay pullback attractor upper semi-continuity |
title | Upper semi-continuity of pullback attractors for bipolar fluids with delay |
title_full | Upper semi-continuity of pullback attractors for bipolar fluids with delay |
title_fullStr | Upper semi-continuity of pullback attractors for bipolar fluids with delay |
title_full_unstemmed | Upper semi-continuity of pullback attractors for bipolar fluids with delay |
title_short | Upper semi-continuity of pullback attractors for bipolar fluids with delay |
title_sort | upper semi continuity of pullback attractors for bipolar fluids with delay |
topic | bipolar fluid delay pullback attractor upper semi-continuity |
url | https://www.aimspress.com/article/doi/10.3934/era.2023305?viewType=HTML |
work_keys_str_mv | AT guoweiliu uppersemicontinuityofpullbackattractorsforbipolarfluidswithdelay AT haoxu uppersemicontinuityofpullbackattractorsforbipolarfluidswithdelay AT caidizhao uppersemicontinuityofpullbackattractorsforbipolarfluidswithdelay |