Upper semi-continuity of pullback attractors for bipolar fluids with delay

We investigate bipolar fluids with delay in a $ 2D $ channel $ \Sigma = \mathbb{R}\times (-K, K) $ for some $ K > 0 $. The channel $ \Sigma $ is divided into a sequence of simply connected, bounded, and smooth sub-domains $ \Sigma_n (n = 1, 2, 3\cdot\cdot\cdot) $, such that $ \Sigma_n\rightar...

Full description

Bibliographic Details
Main Authors: Guowei Liu, Hao Xu, Caidi Zhao
Format: Article
Language:English
Published: AIMS Press 2023-09-01
Series:Electronic Research Archive
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/era.2023305?viewType=HTML
_version_ 1827762092141182976
author Guowei Liu
Hao Xu
Caidi Zhao
author_facet Guowei Liu
Hao Xu
Caidi Zhao
author_sort Guowei Liu
collection DOAJ
description We investigate bipolar fluids with delay in a $ 2D $ channel $ \Sigma = \mathbb{R}\times (-K, K) $ for some $ K > 0 $. The channel $ \Sigma $ is divided into a sequence of simply connected, bounded, and smooth sub-domains $ \Sigma_n (n = 1, 2, 3\cdot\cdot\cdot) $, such that $ \Sigma_n\rightarrow \Sigma $ as $ n\rightarrow \infty $. The paper demonstrates that the pullback attractors in the sub-domains $ \Sigma_n $ converge to the pullback attractor in the entire domain $ \Sigma $ as $ n\rightarrow \infty. $
first_indexed 2024-03-11T10:24:53Z
format Article
id doaj.art-a6d09c9196594306a6a44a256476f91e
institution Directory Open Access Journal
issn 2688-1594
language English
last_indexed 2024-03-11T10:24:53Z
publishDate 2023-09-01
publisher AIMS Press
record_format Article
series Electronic Research Archive
spelling doaj.art-a6d09c9196594306a6a44a256476f91e2023-11-16T01:25:56ZengAIMS PressElectronic Research Archive2688-15942023-09-0131105996601110.3934/era.2023305Upper semi-continuity of pullback attractors for bipolar fluids with delayGuowei Liu0Hao Xu1Caidi Zhao21. School of Mathematical Sciences, Chongqing Normal University, Chongqing 400047, China1. School of Mathematical Sciences, Chongqing Normal University, Chongqing 400047, China2. Department of Mathematics, Wenzhou University, Wenzhou 325035, ChinaWe investigate bipolar fluids with delay in a $ 2D $ channel $ \Sigma = \mathbb{R}\times (-K, K) $ for some $ K > 0 $. The channel $ \Sigma $ is divided into a sequence of simply connected, bounded, and smooth sub-domains $ \Sigma_n (n = 1, 2, 3\cdot\cdot\cdot) $, such that $ \Sigma_n\rightarrow \Sigma $ as $ n\rightarrow \infty $. The paper demonstrates that the pullback attractors in the sub-domains $ \Sigma_n $ converge to the pullback attractor in the entire domain $ \Sigma $ as $ n\rightarrow \infty. $https://www.aimspress.com/article/doi/10.3934/era.2023305?viewType=HTMLbipolar fluiddelaypullback attractorupper semi-continuity
spellingShingle Guowei Liu
Hao Xu
Caidi Zhao
Upper semi-continuity of pullback attractors for bipolar fluids with delay
Electronic Research Archive
bipolar fluid
delay
pullback attractor
upper semi-continuity
title Upper semi-continuity of pullback attractors for bipolar fluids with delay
title_full Upper semi-continuity of pullback attractors for bipolar fluids with delay
title_fullStr Upper semi-continuity of pullback attractors for bipolar fluids with delay
title_full_unstemmed Upper semi-continuity of pullback attractors for bipolar fluids with delay
title_short Upper semi-continuity of pullback attractors for bipolar fluids with delay
title_sort upper semi continuity of pullback attractors for bipolar fluids with delay
topic bipolar fluid
delay
pullback attractor
upper semi-continuity
url https://www.aimspress.com/article/doi/10.3934/era.2023305?viewType=HTML
work_keys_str_mv AT guoweiliu uppersemicontinuityofpullbackattractorsforbipolarfluidswithdelay
AT haoxu uppersemicontinuityofpullbackattractorsforbipolarfluidswithdelay
AT caidizhao uppersemicontinuityofpullbackattractorsforbipolarfluidswithdelay