No-go theorem for boson condensation in topologically ordered quantum liquids
Certain phase transitions between topological quantum field theories (TQFTs) are driven by the condensation of bosonic anyons. However, as bosons in a TQFT are themselves nontrivial collective excitations, there can be topological obstructions that prevent them from condensing. Here we formulate suc...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IOP Publishing
2016-01-01
|
Series: | New Journal of Physics |
Subjects: | |
Online Access: | https://doi.org/10.1088/1367-2630/18/12/123009 |
Summary: | Certain phase transitions between topological quantum field theories (TQFTs) are driven by the condensation of bosonic anyons. However, as bosons in a TQFT are themselves nontrivial collective excitations, there can be topological obstructions that prevent them from condensing. Here we formulate such an obstruction in the form of a no-go theorem. We use it to show that no condensation is possible in SO(3) _k TQFTs with odd k . We further show that a ‘layered’ theory obtained by tensoring SO(3) _k TQFT with itself any integer number of times does not admit condensation transitions either. This includes (as the case k = 3) the noncondensability of any number of layers of the Fibonacci TQFT. |
---|---|
ISSN: | 1367-2630 |