Almost Optimality of the Orthogonal Super Greedy Algorithm for <i>μ</i>-Coherent Dictionaries

We study the approximation capability of the orthogonal super greedy algorithm (OSGA) with respect to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>μ</mi></semantics></math></inline-fo...

Full description

Bibliographic Details
Main Authors: Chunfang Shao, Jincai Chang, Peixin Ye, Wenhui Zhang, Shuo Xing
Format: Article
Language:English
Published: MDPI AG 2022-04-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/11/5/186
_version_ 1827670413083148288
author Chunfang Shao
Jincai Chang
Peixin Ye
Wenhui Zhang
Shuo Xing
author_facet Chunfang Shao
Jincai Chang
Peixin Ye
Wenhui Zhang
Shuo Xing
author_sort Chunfang Shao
collection DOAJ
description We study the approximation capability of the orthogonal super greedy algorithm (OSGA) with respect to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>μ</mi></semantics></math></inline-formula>-coherent dictionaries in Hilbert spaces. We establish the Lebesgue-type inequalities for OSGA, which show that the OSGA provides an almost optimal approximation on the first <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><mn>1</mn><mo>/</mo><mo stretchy="false">(</mo><mn>18</mn><mspace width="3.33333pt"></mspace><mi mathvariant="sans-serif">μ</mi><mi mathvariant="normal">s</mi><mo>)</mo><mo>]</mo></mrow></semantics></math></inline-formula> steps. Moreover, we improve the asymptotic constant in the Lebesgue-type inequality of OGA obtained by Livshitz E D.
first_indexed 2024-03-10T03:20:39Z
format Article
id doaj.art-a6db6651ef144d8299406c7301bca30e
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-10T03:20:39Z
publishDate 2022-04-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-a6db6651ef144d8299406c7301bca30e2023-11-23T10:03:47ZengMDPI AGAxioms2075-16802022-04-0111518610.3390/axioms11050186Almost Optimality of the Orthogonal Super Greedy Algorithm for <i>μ</i>-Coherent DictionariesChunfang Shao0Jincai Chang1Peixin Ye2Wenhui Zhang3Shuo Xing4College of Science, North China University of Science and Technology, Tangshan 063210, ChinaCollege of Science, North China University of Science and Technology, Tangshan 063210, ChinaSchool of Mathematics and LPMC, Nankai University, Tianjin 300071, ChinaSchool of Mathematics and LPMC, Nankai University, Tianjin 300071, ChinaSchool of Mathematics and LPMC, Nankai University, Tianjin 300071, ChinaWe study the approximation capability of the orthogonal super greedy algorithm (OSGA) with respect to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>μ</mi></semantics></math></inline-formula>-coherent dictionaries in Hilbert spaces. We establish the Lebesgue-type inequalities for OSGA, which show that the OSGA provides an almost optimal approximation on the first <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><mn>1</mn><mo>/</mo><mo stretchy="false">(</mo><mn>18</mn><mspace width="3.33333pt"></mspace><mi mathvariant="sans-serif">μ</mi><mi mathvariant="normal">s</mi><mo>)</mo><mo>]</mo></mrow></semantics></math></inline-formula> steps. Moreover, we improve the asymptotic constant in the Lebesgue-type inequality of OGA obtained by Livshitz E D.https://www.mdpi.com/2075-1680/11/5/186orthogonal super greedy algorighmcoherencebest <i>n</i>-term approximationLebesgue-type inequality
spellingShingle Chunfang Shao
Jincai Chang
Peixin Ye
Wenhui Zhang
Shuo Xing
Almost Optimality of the Orthogonal Super Greedy Algorithm for <i>μ</i>-Coherent Dictionaries
Axioms
orthogonal super greedy algorighm
coherence
best <i>n</i>-term approximation
Lebesgue-type inequality
title Almost Optimality of the Orthogonal Super Greedy Algorithm for <i>μ</i>-Coherent Dictionaries
title_full Almost Optimality of the Orthogonal Super Greedy Algorithm for <i>μ</i>-Coherent Dictionaries
title_fullStr Almost Optimality of the Orthogonal Super Greedy Algorithm for <i>μ</i>-Coherent Dictionaries
title_full_unstemmed Almost Optimality of the Orthogonal Super Greedy Algorithm for <i>μ</i>-Coherent Dictionaries
title_short Almost Optimality of the Orthogonal Super Greedy Algorithm for <i>μ</i>-Coherent Dictionaries
title_sort almost optimality of the orthogonal super greedy algorithm for i μ i coherent dictionaries
topic orthogonal super greedy algorighm
coherence
best <i>n</i>-term approximation
Lebesgue-type inequality
url https://www.mdpi.com/2075-1680/11/5/186
work_keys_str_mv AT chunfangshao almostoptimalityoftheorthogonalsupergreedyalgorithmforimicoherentdictionaries
AT jincaichang almostoptimalityoftheorthogonalsupergreedyalgorithmforimicoherentdictionaries
AT peixinye almostoptimalityoftheorthogonalsupergreedyalgorithmforimicoherentdictionaries
AT wenhuizhang almostoptimalityoftheorthogonalsupergreedyalgorithmforimicoherentdictionaries
AT shuoxing almostoptimalityoftheorthogonalsupergreedyalgorithmforimicoherentdictionaries