EXCITATION OF A PULSE ELECTROMECHANICAL CONVERTER OF ELECTRODYNAMIC TYPE FROM A TWO-SECTION CAPACITOR ENERGY STORAGE
A mathematical model of a pulsed electromechanical converter (PEC) of electrodynamic type has been developed, in which the solutions of the equations are presented in a recurrent form, which, when numerically implemented, allows taking into account the interrelated electrical, magnetic, mechanical a...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
NAS of Ukraine, Institute of elecrodynamics
2021-02-01
|
Series: | Технічна електродинаміка |
Subjects: | |
Online Access: | https://techned.org.ua/index.php/techned/article/view/136 |
Summary: | A mathematical model of a pulsed electromechanical converter (PEC) of electrodynamic type has been developed, in which the solutions of the equations are presented in a recurrent form, which, when numerically implemented, allows taking into account the interrelated electrical, magnetic, mechanical and thermal processes and their nonlinear parameters. While maintaining the total energy of the pulsed source, the influence of the distribution of energy between the two sections of the capacitive energy storage (CES) and the voltage at which the additional section of the CES is connected was established. When operating in an accelerating mode, the largest amplitude of electrodynamic forces (EDF) and maximum speed occur in the basic version of the PEC, which is excited only from the main section of the CES, and the most effective is the PEC with the smallest capacity of the main section of the CES, and its maximum value is 2.61 higher than for the basic version of the PEC. When operating in the shock-power mode, compared with the basic version of the PEC, the amplitude of the EDF decreases. The most effective is the PEC with the smallest capacity of the main section of the CES, and its maximum value is 5.17 higher than that of the basic version of the PEC. Experimental studies of the PEC in the shock-power mode established that the oscillograms of the voltage of the CES and the current of the PEC correspond to the calculated characteristics, and their main indicators are consistent with each other with an accuracy of 5-7%. References 16, figures 6. |
---|---|
ISSN: | 1607-7970 2218-1903 |