Synthesis and Evaluation of Lipid-based Nanoparticle Containing Ginger Extract against Aspergillus Species
Introduction: Loading the active ingredients of medicinal plants in lipid nanoparticles reduces the reaction of the active substance with the surrounding environment, such as water and oxygen, and reduces the intensity of transmission or evaporation to the external environment. In this study, intend...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | fas |
Published: |
Shahid Sadoughi University of Medical Sciences
2020-08-01
|
Series: | Majallah-i Dānishgāh-i ’Ulūm-i Pizishkī-i Shahīd Ṣadūqī Yazd |
Subjects: | |
Online Access: | http://jssu.ssu.ac.ir/article-1-5045-en.html |
_version_ | 1818976648604680192 |
---|---|
author | Vahid Yakhchi Shabnam Jahanizadeh Fatemeh Yazdian Hamid Rashedi Bibi Fatemeh Haghiralsadat |
author_facet | Vahid Yakhchi Shabnam Jahanizadeh Fatemeh Yazdian Hamid Rashedi Bibi Fatemeh Haghiralsadat |
author_sort | Vahid Yakhchi |
collection | DOAJ |
description | Introduction: Loading the active ingredients of medicinal plants in lipid nanoparticles reduces the reaction of the active substance with the surrounding environment, such as water and oxygen, and reduces the intensity of transmission or evaporation to the external environment. In this study, intended to enhance efficacy of ginger extract, encapsulation in nanoliponiosome synthesized by thin-film hydration method were done and their antifungal effect on the growth of Aspergillus flavus and Aspergillus parasiticus were studied.
Methods: In this experimental laboratory study, derivation was done using Soxhlet extractor method. Antifungal activity of ginger extract was specific by disc diffusion and microplate dilution methods. The inhibitory effect of extract was investigated. Physiochemical characteristics and structural characterization of nanoparticle were evaluated from the perspective of in vitro efficiency, drug release, nanoparticle size, zeta potential, surface morphology and FTIR (Fourier-transform infrared spectroscopy), DLS (Dynamic light scattering) and finally SEM (Scanning electron microscope) spectra.
Results: FTIR investigations showed ginger extract and nanoliponiosome had no chemical interaction leading to change the functional groups. SEM microscope showed the spherical mprphology of particles and average particles size of 73nm. Ginger extract was loaded into the nanoliponiosome with a yield of 71%. It was also found out that ginger extract had a stronger antifungal effect against Aspergillus flavus fungus compared to the Aspergillus parasiticus fungus. At both 37°C and 42°C, the release of ginger extract was higher at pH of 4.5 compared to neutral pH (7.4).
Conclusion: Nanoliponiosomes containing ginger extract with good physicochemical properties, increased drug stability and good release control can be promising antifungal agents with high antifungal effects and low side effects. |
first_indexed | 2024-12-20T16:15:11Z |
format | Article |
id | doaj.art-a6eaef893b204b2a9cbeff8c2e4a72e4 |
institution | Directory Open Access Journal |
issn | 2228-5741 2228-5733 |
language | fas |
last_indexed | 2024-12-20T16:15:11Z |
publishDate | 2020-08-01 |
publisher | Shahid Sadoughi University of Medical Sciences |
record_format | Article |
series | Majallah-i Dānishgāh-i ’Ulūm-i Pizishkī-i Shahīd Ṣadūqī Yazd |
spelling | doaj.art-a6eaef893b204b2a9cbeff8c2e4a72e42022-12-21T19:33:50ZfasShahid Sadoughi University of Medical SciencesMajallah-i Dānishgāh-i ’Ulūm-i Pizishkī-i Shahīd Ṣadūqī Yazd2228-57412228-57332020-08-0128627662780Synthesis and Evaluation of Lipid-based Nanoparticle Containing Ginger Extract against Aspergillus SpeciesVahid Yakhchi0Shabnam Jahanizadeh1Fatemeh Yazdian2Hamid Rashedi3Bibi Fatemeh Haghiralsadat4 Department of Biology, Payam Noor University, Tehran Applied Chemistry, Young Researchers and Elite Club, Arak Branch, Islamic Azad University, Arak Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd Introduction: Loading the active ingredients of medicinal plants in lipid nanoparticles reduces the reaction of the active substance with the surrounding environment, such as water and oxygen, and reduces the intensity of transmission or evaporation to the external environment. In this study, intended to enhance efficacy of ginger extract, encapsulation in nanoliponiosome synthesized by thin-film hydration method were done and their antifungal effect on the growth of Aspergillus flavus and Aspergillus parasiticus were studied. Methods: In this experimental laboratory study, derivation was done using Soxhlet extractor method. Antifungal activity of ginger extract was specific by disc diffusion and microplate dilution methods. The inhibitory effect of extract was investigated. Physiochemical characteristics and structural characterization of nanoparticle were evaluated from the perspective of in vitro efficiency, drug release, nanoparticle size, zeta potential, surface morphology and FTIR (Fourier-transform infrared spectroscopy), DLS (Dynamic light scattering) and finally SEM (Scanning electron microscope) spectra. Results: FTIR investigations showed ginger extract and nanoliponiosome had no chemical interaction leading to change the functional groups. SEM microscope showed the spherical mprphology of particles and average particles size of 73nm. Ginger extract was loaded into the nanoliponiosome with a yield of 71%. It was also found out that ginger extract had a stronger antifungal effect against Aspergillus flavus fungus compared to the Aspergillus parasiticus fungus. At both 37°C and 42°C, the release of ginger extract was higher at pH of 4.5 compared to neutral pH (7.4). Conclusion: Nanoliponiosomes containing ginger extract with good physicochemical properties, increased drug stability and good release control can be promising antifungal agents with high antifungal effects and low side effects.http://jssu.ssu.ac.ir/article-1-5045-en.htmlginger extractnano liponiosomeaspergillus flavusaspergillus parasiticusantifungal |
spellingShingle | Vahid Yakhchi Shabnam Jahanizadeh Fatemeh Yazdian Hamid Rashedi Bibi Fatemeh Haghiralsadat Synthesis and Evaluation of Lipid-based Nanoparticle Containing Ginger Extract against Aspergillus Species Majallah-i Dānishgāh-i ’Ulūm-i Pizishkī-i Shahīd Ṣadūqī Yazd ginger extract nano liponiosome aspergillus flavus aspergillus parasiticus antifungal |
title | Synthesis and Evaluation of Lipid-based Nanoparticle Containing Ginger Extract against Aspergillus Species |
title_full | Synthesis and Evaluation of Lipid-based Nanoparticle Containing Ginger Extract against Aspergillus Species |
title_fullStr | Synthesis and Evaluation of Lipid-based Nanoparticle Containing Ginger Extract against Aspergillus Species |
title_full_unstemmed | Synthesis and Evaluation of Lipid-based Nanoparticle Containing Ginger Extract against Aspergillus Species |
title_short | Synthesis and Evaluation of Lipid-based Nanoparticle Containing Ginger Extract against Aspergillus Species |
title_sort | synthesis and evaluation of lipid based nanoparticle containing ginger extract against aspergillus species |
topic | ginger extract nano liponiosome aspergillus flavus aspergillus parasiticus antifungal |
url | http://jssu.ssu.ac.ir/article-1-5045-en.html |
work_keys_str_mv | AT vahidyakhchi synthesisandevaluationoflipidbasednanoparticlecontaininggingerextractagainstaspergillusspecies AT shabnamjahanizadeh synthesisandevaluationoflipidbasednanoparticlecontaininggingerextractagainstaspergillusspecies AT fatemehyazdian synthesisandevaluationoflipidbasednanoparticlecontaininggingerextractagainstaspergillusspecies AT hamidrashedi synthesisandevaluationoflipidbasednanoparticlecontaininggingerextractagainstaspergillusspecies AT bibifatemehhaghiralsadat synthesisandevaluationoflipidbasednanoparticlecontaininggingerextractagainstaspergillusspecies |