A CT-Based Radiomic Signature Can Be Prognostic for 10-Months Overall Survival in Metastatic Tumors Treated with Nivolumab: An Exploratory Study

Baseline clinical prognostic factors for recurrent and/or metastatic (RM) head and neck squamous cell carcinoma (HNSCC) treated with immunotherapy are lacking. CT-based radiomics may provide additional prognostic information. A total of 85 patients with RM-HNSCC were enrolled for this study. For eac...

Full description

Bibliographic Details
Main Authors: Valentina D. A. Corino, Marco Bologna, Giuseppina Calareso, Lisa Licitra, Mariagrazia Ghi, Gaetana Rinaldi, Francesco Caponigro, Franco Morelli, Mario Airoldi, Giacomo Allegrini, Alessandra Cassano, Daris Ferrari, Aurora Mirabile, Alicia Tosoni, Danilo Galizia, Marco Merlano, Andrea Sponghini, Gabriella Moretti, Luca Mainardi, Paolo Bossi
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Diagnostics
Subjects:
Online Access:https://www.mdpi.com/2075-4418/11/6/979
_version_ 1797532207737208832
author Valentina D. A. Corino
Marco Bologna
Giuseppina Calareso
Lisa Licitra
Mariagrazia Ghi
Gaetana Rinaldi
Francesco Caponigro
Franco Morelli
Mario Airoldi
Giacomo Allegrini
Alessandra Cassano
Daris Ferrari
Aurora Mirabile
Alicia Tosoni
Danilo Galizia
Marco Merlano
Andrea Sponghini
Gabriella Moretti
Luca Mainardi
Paolo Bossi
author_facet Valentina D. A. Corino
Marco Bologna
Giuseppina Calareso
Lisa Licitra
Mariagrazia Ghi
Gaetana Rinaldi
Francesco Caponigro
Franco Morelli
Mario Airoldi
Giacomo Allegrini
Alessandra Cassano
Daris Ferrari
Aurora Mirabile
Alicia Tosoni
Danilo Galizia
Marco Merlano
Andrea Sponghini
Gabriella Moretti
Luca Mainardi
Paolo Bossi
author_sort Valentina D. A. Corino
collection DOAJ
description Baseline clinical prognostic factors for recurrent and/or metastatic (RM) head and neck squamous cell carcinoma (HNSCC) treated with immunotherapy are lacking. CT-based radiomics may provide additional prognostic information. A total of 85 patients with RM-HNSCC were enrolled for this study. For each tumor, radiomic features were extracted from the segmentation of the largest tumor mass. A pipeline including different feature selection steps was used to train a radiomic signature prognostic for 10-month overall survival (OS). Features were selected based on their stability to geometrical transformation of the segmentation (intraclass correlation coefficient, ICC > 0.75) and their predictive power (area under the curve, AUC > 0.7). The predictive model was developed using the least absolute shrinkage and selection operator (LASSO) in combination with the support vector machine. The model was developed based on the first 68 enrolled patients and tested on the last 17 patients. Classification performance of the radiomic risk was evaluated accuracy and the AUC. The same metrics were computed for some baseline predictors used in clinical practice (volume of largest lesion, total tumor volume, number of tumor lesions, number of affected organs, performance status). The AUC in the test set was 0.67, while accuracy was 0.82. The performance of the radiomic score was higher than the one obtainable with the clinical variables (largest lesion volume: accuracy 0.59, AUC = 0.55; number of tumoral lesions: accuracy 0.71, AUC 0.36; number of affected organs: accuracy 0.47; AUC 0.42; total tumor volume: accuracy 0.59, AUC 0.53; performance status: accuracy 0.41, AUC = 0.47). Radiomics may provide additional baseline prognostic value compared to the variables used in clinical practice.
first_indexed 2024-03-10T10:55:52Z
format Article
id doaj.art-a6f54f48f555409380e2526732486452
institution Directory Open Access Journal
issn 2075-4418
language English
last_indexed 2024-03-10T10:55:52Z
publishDate 2021-05-01
publisher MDPI AG
record_format Article
series Diagnostics
spelling doaj.art-a6f54f48f555409380e25267324864522023-11-21T21:52:15ZengMDPI AGDiagnostics2075-44182021-05-0111697910.3390/diagnostics11060979A CT-Based Radiomic Signature Can Be Prognostic for 10-Months Overall Survival in Metastatic Tumors Treated with Nivolumab: An Exploratory StudyValentina D. A. Corino0Marco Bologna1Giuseppina Calareso2Lisa Licitra3Mariagrazia Ghi4Gaetana Rinaldi5Francesco Caponigro6Franco Morelli7Mario Airoldi8Giacomo Allegrini9Alessandra Cassano10Daris Ferrari11Aurora Mirabile12Alicia Tosoni13Danilo Galizia14Marco Merlano15Andrea Sponghini16Gabriella Moretti17Luca Mainardi18Paolo Bossi19Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, 20133 Milan, ItalyDepartment of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, 20133 Milan, ItalyRadiology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133 Milan, ItalyHead and Neck Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, University of Milan, 20133 Milan, ItalyOncology 2 Unit, IRCCS Istituto Oncologico Veneto, 35128 Padua, ItalyMedical Oncology Unit, Policlinico P. Giaccone University Hospital, 90127 Palermo, ItalyHead and Neck Medical and Experimental Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, 80131 Naples, ItalyDepartment of Oncology, IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, ItalyMedical Oncology 2 Unit, University Hospital “Città della Salute e della Scienza”, 10126 Turin, ItalyAzienda USL Toscana Nord Ovest, 56121 Tuscany, ItalyMedical Oncology Unit, Policlinico Gemelli, 00168 Rome, ItalyMedical Oncology Unit, San Paolo Hospital, 20142 Milan, ItalyMedical Oncology Unit, San Raffaele Hospital, 20132 Segrate, ItalyMedical Oncology Department, Azienda USL/IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, ItalyMultidisciplinary Outpatient Oncology Clinic, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, ItalyMultidisciplinary Outpatient Oncology Clinic, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy“Maggiore della Carità” University Hospital, 28100 Novara, ItalyGM Medical Oncology Unit, IRCCS Arcispedale S. Maria Nuova, 42123 Reggio Emilia, ItalyDepartment of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, 20133 Milan, ItalyMedical Oncology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health University of Brescia, ASST-Spedali Civili, 25123 Brescia, ItalyBaseline clinical prognostic factors for recurrent and/or metastatic (RM) head and neck squamous cell carcinoma (HNSCC) treated with immunotherapy are lacking. CT-based radiomics may provide additional prognostic information. A total of 85 patients with RM-HNSCC were enrolled for this study. For each tumor, radiomic features were extracted from the segmentation of the largest tumor mass. A pipeline including different feature selection steps was used to train a radiomic signature prognostic for 10-month overall survival (OS). Features were selected based on their stability to geometrical transformation of the segmentation (intraclass correlation coefficient, ICC > 0.75) and their predictive power (area under the curve, AUC > 0.7). The predictive model was developed using the least absolute shrinkage and selection operator (LASSO) in combination with the support vector machine. The model was developed based on the first 68 enrolled patients and tested on the last 17 patients. Classification performance of the radiomic risk was evaluated accuracy and the AUC. The same metrics were computed for some baseline predictors used in clinical practice (volume of largest lesion, total tumor volume, number of tumor lesions, number of affected organs, performance status). The AUC in the test set was 0.67, while accuracy was 0.82. The performance of the radiomic score was higher than the one obtainable with the clinical variables (largest lesion volume: accuracy 0.59, AUC = 0.55; number of tumoral lesions: accuracy 0.71, AUC 0.36; number of affected organs: accuracy 0.47; AUC 0.42; total tumor volume: accuracy 0.59, AUC 0.53; performance status: accuracy 0.41, AUC = 0.47). Radiomics may provide additional baseline prognostic value compared to the variables used in clinical practice.https://www.mdpi.com/2075-4418/11/6/979head and neck squamous cell carcinomaradiomicsCToverall survival
spellingShingle Valentina D. A. Corino
Marco Bologna
Giuseppina Calareso
Lisa Licitra
Mariagrazia Ghi
Gaetana Rinaldi
Francesco Caponigro
Franco Morelli
Mario Airoldi
Giacomo Allegrini
Alessandra Cassano
Daris Ferrari
Aurora Mirabile
Alicia Tosoni
Danilo Galizia
Marco Merlano
Andrea Sponghini
Gabriella Moretti
Luca Mainardi
Paolo Bossi
A CT-Based Radiomic Signature Can Be Prognostic for 10-Months Overall Survival in Metastatic Tumors Treated with Nivolumab: An Exploratory Study
Diagnostics
head and neck squamous cell carcinoma
radiomics
CT
overall survival
title A CT-Based Radiomic Signature Can Be Prognostic for 10-Months Overall Survival in Metastatic Tumors Treated with Nivolumab: An Exploratory Study
title_full A CT-Based Radiomic Signature Can Be Prognostic for 10-Months Overall Survival in Metastatic Tumors Treated with Nivolumab: An Exploratory Study
title_fullStr A CT-Based Radiomic Signature Can Be Prognostic for 10-Months Overall Survival in Metastatic Tumors Treated with Nivolumab: An Exploratory Study
title_full_unstemmed A CT-Based Radiomic Signature Can Be Prognostic for 10-Months Overall Survival in Metastatic Tumors Treated with Nivolumab: An Exploratory Study
title_short A CT-Based Radiomic Signature Can Be Prognostic for 10-Months Overall Survival in Metastatic Tumors Treated with Nivolumab: An Exploratory Study
title_sort ct based radiomic signature can be prognostic for 10 months overall survival in metastatic tumors treated with nivolumab an exploratory study
topic head and neck squamous cell carcinoma
radiomics
CT
overall survival
url https://www.mdpi.com/2075-4418/11/6/979
work_keys_str_mv AT valentinadacorino actbasedradiomicsignaturecanbeprognosticfor10monthsoverallsurvivalinmetastatictumorstreatedwithnivolumabanexploratorystudy
AT marcobologna actbasedradiomicsignaturecanbeprognosticfor10monthsoverallsurvivalinmetastatictumorstreatedwithnivolumabanexploratorystudy
AT giuseppinacalareso actbasedradiomicsignaturecanbeprognosticfor10monthsoverallsurvivalinmetastatictumorstreatedwithnivolumabanexploratorystudy
AT lisalicitra actbasedradiomicsignaturecanbeprognosticfor10monthsoverallsurvivalinmetastatictumorstreatedwithnivolumabanexploratorystudy
AT mariagraziaghi actbasedradiomicsignaturecanbeprognosticfor10monthsoverallsurvivalinmetastatictumorstreatedwithnivolumabanexploratorystudy
AT gaetanarinaldi actbasedradiomicsignaturecanbeprognosticfor10monthsoverallsurvivalinmetastatictumorstreatedwithnivolumabanexploratorystudy
AT francescocaponigro actbasedradiomicsignaturecanbeprognosticfor10monthsoverallsurvivalinmetastatictumorstreatedwithnivolumabanexploratorystudy
AT francomorelli actbasedradiomicsignaturecanbeprognosticfor10monthsoverallsurvivalinmetastatictumorstreatedwithnivolumabanexploratorystudy
AT marioairoldi actbasedradiomicsignaturecanbeprognosticfor10monthsoverallsurvivalinmetastatictumorstreatedwithnivolumabanexploratorystudy
AT giacomoallegrini actbasedradiomicsignaturecanbeprognosticfor10monthsoverallsurvivalinmetastatictumorstreatedwithnivolumabanexploratorystudy
AT alessandracassano actbasedradiomicsignaturecanbeprognosticfor10monthsoverallsurvivalinmetastatictumorstreatedwithnivolumabanexploratorystudy
AT darisferrari actbasedradiomicsignaturecanbeprognosticfor10monthsoverallsurvivalinmetastatictumorstreatedwithnivolumabanexploratorystudy
AT auroramirabile actbasedradiomicsignaturecanbeprognosticfor10monthsoverallsurvivalinmetastatictumorstreatedwithnivolumabanexploratorystudy
AT aliciatosoni actbasedradiomicsignaturecanbeprognosticfor10monthsoverallsurvivalinmetastatictumorstreatedwithnivolumabanexploratorystudy
AT danilogalizia actbasedradiomicsignaturecanbeprognosticfor10monthsoverallsurvivalinmetastatictumorstreatedwithnivolumabanexploratorystudy
AT marcomerlano actbasedradiomicsignaturecanbeprognosticfor10monthsoverallsurvivalinmetastatictumorstreatedwithnivolumabanexploratorystudy
AT andreasponghini actbasedradiomicsignaturecanbeprognosticfor10monthsoverallsurvivalinmetastatictumorstreatedwithnivolumabanexploratorystudy
AT gabriellamoretti actbasedradiomicsignaturecanbeprognosticfor10monthsoverallsurvivalinmetastatictumorstreatedwithnivolumabanexploratorystudy
AT lucamainardi actbasedradiomicsignaturecanbeprognosticfor10monthsoverallsurvivalinmetastatictumorstreatedwithnivolumabanexploratorystudy
AT paolobossi actbasedradiomicsignaturecanbeprognosticfor10monthsoverallsurvivalinmetastatictumorstreatedwithnivolumabanexploratorystudy
AT valentinadacorino ctbasedradiomicsignaturecanbeprognosticfor10monthsoverallsurvivalinmetastatictumorstreatedwithnivolumabanexploratorystudy
AT marcobologna ctbasedradiomicsignaturecanbeprognosticfor10monthsoverallsurvivalinmetastatictumorstreatedwithnivolumabanexploratorystudy
AT giuseppinacalareso ctbasedradiomicsignaturecanbeprognosticfor10monthsoverallsurvivalinmetastatictumorstreatedwithnivolumabanexploratorystudy
AT lisalicitra ctbasedradiomicsignaturecanbeprognosticfor10monthsoverallsurvivalinmetastatictumorstreatedwithnivolumabanexploratorystudy
AT mariagraziaghi ctbasedradiomicsignaturecanbeprognosticfor10monthsoverallsurvivalinmetastatictumorstreatedwithnivolumabanexploratorystudy
AT gaetanarinaldi ctbasedradiomicsignaturecanbeprognosticfor10monthsoverallsurvivalinmetastatictumorstreatedwithnivolumabanexploratorystudy
AT francescocaponigro ctbasedradiomicsignaturecanbeprognosticfor10monthsoverallsurvivalinmetastatictumorstreatedwithnivolumabanexploratorystudy
AT francomorelli ctbasedradiomicsignaturecanbeprognosticfor10monthsoverallsurvivalinmetastatictumorstreatedwithnivolumabanexploratorystudy
AT marioairoldi ctbasedradiomicsignaturecanbeprognosticfor10monthsoverallsurvivalinmetastatictumorstreatedwithnivolumabanexploratorystudy
AT giacomoallegrini ctbasedradiomicsignaturecanbeprognosticfor10monthsoverallsurvivalinmetastatictumorstreatedwithnivolumabanexploratorystudy
AT alessandracassano ctbasedradiomicsignaturecanbeprognosticfor10monthsoverallsurvivalinmetastatictumorstreatedwithnivolumabanexploratorystudy
AT darisferrari ctbasedradiomicsignaturecanbeprognosticfor10monthsoverallsurvivalinmetastatictumorstreatedwithnivolumabanexploratorystudy
AT auroramirabile ctbasedradiomicsignaturecanbeprognosticfor10monthsoverallsurvivalinmetastatictumorstreatedwithnivolumabanexploratorystudy
AT aliciatosoni ctbasedradiomicsignaturecanbeprognosticfor10monthsoverallsurvivalinmetastatictumorstreatedwithnivolumabanexploratorystudy
AT danilogalizia ctbasedradiomicsignaturecanbeprognosticfor10monthsoverallsurvivalinmetastatictumorstreatedwithnivolumabanexploratorystudy
AT marcomerlano ctbasedradiomicsignaturecanbeprognosticfor10monthsoverallsurvivalinmetastatictumorstreatedwithnivolumabanexploratorystudy
AT andreasponghini ctbasedradiomicsignaturecanbeprognosticfor10monthsoverallsurvivalinmetastatictumorstreatedwithnivolumabanexploratorystudy
AT gabriellamoretti ctbasedradiomicsignaturecanbeprognosticfor10monthsoverallsurvivalinmetastatictumorstreatedwithnivolumabanexploratorystudy
AT lucamainardi ctbasedradiomicsignaturecanbeprognosticfor10monthsoverallsurvivalinmetastatictumorstreatedwithnivolumabanexploratorystudy
AT paolobossi ctbasedradiomicsignaturecanbeprognosticfor10monthsoverallsurvivalinmetastatictumorstreatedwithnivolumabanexploratorystudy