Effects of Nozzle Configuration on Rock Erosion Under a Supercritical Carbon Dioxide Jet at Various Pressures and Temperatures

The supercritical carbon dioxide (SC-CO2) jet offers many advantages over water jets in the field of oil and gas exploration and development. To take better advantage of the SC-CO2 jet, effects of nozzle configuration on rock erosion characteristics were experimentally investigated with respect to t...

Full description

Bibliographic Details
Main Authors: Man Huang, Yong Kang, Xiaochuan Wang, Yi Hu, Deng Li, Can Cai, Feng Chen
Format: Article
Language:English
Published: MDPI AG 2017-06-01
Series:Applied Sciences
Subjects:
Online Access:http://www.mdpi.com/2076-3417/7/6/606
Description
Summary:The supercritical carbon dioxide (SC-CO2) jet offers many advantages over water jets in the field of oil and gas exploration and development. To take better advantage of the SC-CO2 jet, effects of nozzle configuration on rock erosion characteristics were experimentally investigated with respect to the erosion volume. A convergent nozzle and two Laval nozzles, as well as artificial cores were employed in the experiments. It was found that the Laval nozzle can enhance rock erosion ability, which largely depends on the pressure and temperature conditions. The enhancement increases with rising inlet pressure. Compared with the convergent nozzle, the Laval-1 nozzle maximally enhances the erosion volume by 10%, 21.2% and 30.3% at inlet pressures of 30, 40 and 50 MPa, respectively; while the Laval-2 nozzle maximally increases the erosion volume by 32.5%, 49.2% and 60%. Moreover, the enhancement decreases with increasing ambient pressure under constant inlet pressure or constant pressure drop. The growth of fluid temperature above the critical value can increase the enhancement. In addition, the jet from the Laval-2 nozzle with a smooth inner profile always has a greater erosion ability than that from the Laval-1 nozzle.
ISSN:2076-3417