Training Deep Convolutional Neural Networks with Resistive Cross-Point Devices
In a previous work we have detailed the requirements for obtaining maximal deep learning performance benefit by implementing fully connected deep neural networks (DNN) in the form of arrays of resistive devices. Here we extend the concept of Resistive Processing Unit (RPU) devices to convolutional n...
Hlavní autoři: | Tayfun Gokmen, Murat Onen, Wilfried Haensch |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
Frontiers Media S.A.
2017-10-01
|
Edice: | Frontiers in Neuroscience |
Témata: | |
On-line přístup: | http://journal.frontiersin.org/article/10.3389/fnins.2017.00538/full |
Podobné jednotky
-
Training LSTM Networks With Resistive Cross-Point Devices
Autor: Tayfun Gokmen, a další
Vydáno: (2018-10-01) -
MR-PIPA: An Integrated Multilevel RRAM (HfO<sub><italic>x</italic></sub>)-Based Processing-In-Pixel Accelerator
Autor: Minhaz Abedin, a další
Vydáno: (2022-01-01) -
Reliable and Energy-Efficient Diabetic Retinopathy Screening Using Memristor-Based Neural Networks
Autor: Sumit Diware, a další
Vydáno: (2024-01-01) -
Design implementations of ternary logic systems: A critical review
Autor: Furqan Zahoor, a další
Vydáno: (2024-09-01) -
Accurate Inference With Inaccurate RRAM Devices: A Joint Algorithm-Design Solution
Autor: Gouranga Charan, a další
Vydáno: (2020-01-01)