Training Deep Convolutional Neural Networks with Resistive Cross-Point Devices
In a previous work we have detailed the requirements for obtaining maximal deep learning performance benefit by implementing fully connected deep neural networks (DNN) in the form of arrays of resistive devices. Here we extend the concept of Resistive Processing Unit (RPU) devices to convolutional n...
Auteurs principaux: | Tayfun Gokmen, Murat Onen, Wilfried Haensch |
---|---|
Format: | Article |
Langue: | English |
Publié: |
Frontiers Media S.A.
2017-10-01
|
Collection: | Frontiers in Neuroscience |
Sujets: | |
Accès en ligne: | http://journal.frontiersin.org/article/10.3389/fnins.2017.00538/full |
Documents similaires
-
Training LSTM Networks With Resistive Cross-Point Devices
par: Tayfun Gokmen, et autres
Publié: (2018-10-01) -
MR-PIPA: An Integrated Multilevel RRAM (HfO<sub><italic>x</italic></sub>)-Based Processing-In-Pixel Accelerator
par: Minhaz Abedin, et autres
Publié: (2022-01-01) -
Reliable and Energy-Efficient Diabetic Retinopathy Screening Using Memristor-Based Neural Networks
par: Sumit Diware, et autres
Publié: (2024-01-01) -
Design implementations of ternary logic systems: A critical review
par: Furqan Zahoor, et autres
Publié: (2024-09-01) -
Accurate Inference With Inaccurate RRAM Devices: A Joint Algorithm-Design Solution
par: Gouranga Charan, et autres
Publié: (2020-01-01)